org.apache.hadoop.hive.ql.udf.generic.GenericUDAFnGrams Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of hive-exec Show documentation
Show all versions of hive-exec Show documentation
Hive is a data warehouse infrastructure built on top of Hadoop see
http://wiki.apache.org/hadoop/Hive
The newest version!
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hive.ql.udf.generic;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.serde2.io.DoubleWritable;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StandardMapObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StandardListObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructField;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.DoubleObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.WritableDoubleObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorUtils;
import org.apache.hadoop.hive.serde2.typeinfo.PrimitiveTypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.ListTypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.util.StringUtils;
import org.apache.hadoop.io.Text;
/**
* Estimates the top-k n-grams in arbitrary sequential data using a heuristic.
*/
@Description(name = "ngrams",
value = "_FUNC_(expr, n, k, pf) - Estimates the top-k n-grams in rows that consist of "
+ "sequences of strings, represented as arrays of strings, or arrays of arrays of "
+ "strings. 'pf' is an optional precision factor that controls memory usage.",
extended = "The parameter 'n' specifies what type of n-grams are being estimated. Unigrams "
+ "are n = 1, and bigrams are n = 2. Generally, n will not be greater than about 5. "
+ "The 'k' parameter specifies how many of the highest-frequency n-grams will be "
+ "returned by the UDAF. The optional precision factor 'pf' specifies how much "
+ "memory to use for estimation; more memory will give more accurate frequency "
+ "counts, but could crash the JVM. The default value is 20, which internally "
+ "maintains 20*k n-grams, but only returns the k highest frequency ones. "
+ "The output is an array of structs with the top-k n-grams. It might be convenient "
+ "to explode() the output of this UDAF.")
public class GenericUDAFnGrams implements GenericUDAFResolver {
static final Log LOG = LogFactory.getLog(GenericUDAFnGrams.class.getName());
@Override
public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters) throws SemanticException {
if (parameters.length != 3 && parameters.length != 4) {
throw new UDFArgumentTypeException(parameters.length-1,
"Please specify either three or four arguments.");
}
// Validate the first parameter, which is the expression to compute over. This should be an
// array of strings type, or an array of arrays of strings.
PrimitiveTypeInfo pti;
if (parameters[0].getCategory() != ObjectInspector.Category.LIST) {
throw new UDFArgumentTypeException(0,
"Only list type arguments are accepted but "
+ parameters[0].getTypeName() + " was passed as parameter 1.");
}
switch (((ListTypeInfo) parameters[0]).getListElementTypeInfo().getCategory()) {
case PRIMITIVE:
// Parameter 1 was an array of primitives, so make sure the primitives are strings.
pti = (PrimitiveTypeInfo) ((ListTypeInfo) parameters[0]).getListElementTypeInfo();
break;
case LIST:
// Parameter 1 was an array of arrays, so make sure that the inner arrays contain
// primitive strings.
ListTypeInfo lti = (ListTypeInfo)
((ListTypeInfo) parameters[0]).getListElementTypeInfo();
pti = (PrimitiveTypeInfo) lti.getListElementTypeInfo();
break;
default:
throw new UDFArgumentTypeException(0,
"Only arrays of strings or arrays of arrays of strings are accepted but "
+ parameters[0].getTypeName() + " was passed as parameter 1.");
}
if(pti.getPrimitiveCategory() != PrimitiveObjectInspector.PrimitiveCategory.STRING) {
throw new UDFArgumentTypeException(0,
"Only array or array> is allowed, but "
+ parameters[0].getTypeName() + " was passed as parameter 1.");
}
// Validate the second parameter, which should be an integer
if(parameters[1].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentTypeException(1, "Only integers are accepted but "
+ parameters[1].getTypeName() + " was passed as parameter 2.");
}
switch(((PrimitiveTypeInfo) parameters[1]).getPrimitiveCategory()) {
case BYTE:
case SHORT:
case INT:
case LONG:
case TIMESTAMP:
break;
default:
throw new UDFArgumentTypeException(1, "Only integers are accepted but "
+ parameters[1].getTypeName() + " was passed as parameter 2.");
}
// Validate the third parameter, which should also be an integer
if(parameters[2].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentTypeException(2, "Only integers are accepted but "
+ parameters[2].getTypeName() + " was passed as parameter 3.");
}
switch(((PrimitiveTypeInfo) parameters[2]).getPrimitiveCategory()) {
case BYTE:
case SHORT:
case INT:
case LONG:
case TIMESTAMP:
break;
default:
throw new UDFArgumentTypeException(2, "Only integers are accepted but "
+ parameters[2].getTypeName() + " was passed as parameter 3.");
}
// If we have the optional fourth parameter, make sure it's also an integer
if(parameters.length == 4) {
if(parameters[3].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentTypeException(3, "Only integers are accepted but "
+ parameters[3].getTypeName() + " was passed as parameter 4.");
}
switch(((PrimitiveTypeInfo) parameters[3]).getPrimitiveCategory()) {
case BYTE:
case SHORT:
case INT:
case LONG:
case TIMESTAMP:
break;
default:
throw new UDFArgumentTypeException(3, "Only integers are accepted but "
+ parameters[3].getTypeName() + " was passed as parameter 4.");
}
}
return new GenericUDAFnGramEvaluator();
}
/**
* A constant-space heuristic to estimate the top-k n-grams.
*/
public static class GenericUDAFnGramEvaluator extends GenericUDAFEvaluator {
// For PARTIAL1 and COMPLETE: ObjectInspectors for original data
private StandardListObjectInspector outerInputOI;
private StandardListObjectInspector innerInputOI;
private PrimitiveObjectInspector inputOI;
private PrimitiveObjectInspector nOI;
private PrimitiveObjectInspector kOI;
private PrimitiveObjectInspector pOI;
// For PARTIAL2 and FINAL: ObjectInspectors for partial aggregations
private StandardListObjectInspector loi;
@Override
public ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException {
super.init(m, parameters);
// Init input object inspectors
if (m == Mode.PARTIAL1 || m == Mode.COMPLETE) {
outerInputOI = (StandardListObjectInspector) parameters[0];
if(outerInputOI.getListElementObjectInspector().getCategory() ==
ObjectInspector.Category.LIST) {
// We're dealing with input that is an array of arrays of strings
innerInputOI = (StandardListObjectInspector) outerInputOI.getListElementObjectInspector();
inputOI = (PrimitiveObjectInspector) innerInputOI.getListElementObjectInspector();
} else {
// We're dealing with input that is an array of strings
inputOI = (PrimitiveObjectInspector) outerInputOI.getListElementObjectInspector();
innerInputOI = null;
}
nOI = (PrimitiveObjectInspector) parameters[1];
kOI = (PrimitiveObjectInspector) parameters[2];
if(parameters.length == 4) {
pOI = (PrimitiveObjectInspector) parameters[3];
} else {
pOI = null;
}
} else {
// Init the list object inspector for handling partial aggregations
loi = (StandardListObjectInspector) parameters[0];
}
// Init output object inspectors.
//
// The return type for a partial aggregation is still a list of strings.
//
// The return type for FINAL and COMPLETE is a full aggregation result, which is
// an array of structures containing the n-gram and its estimated frequency.
if (m == Mode.PARTIAL1 || m == Mode.PARTIAL2) {
return ObjectInspectorFactory.getStandardListObjectInspector(
PrimitiveObjectInspectorFactory.writableStringObjectInspector);
} else {
// Final return type that goes back to Hive: a list of structs with n-grams and their
// estimated frequencies.
ArrayList foi = new ArrayList();
foi.add(ObjectInspectorFactory.getStandardListObjectInspector(
PrimitiveObjectInspectorFactory.writableStringObjectInspector));
foi.add(PrimitiveObjectInspectorFactory.writableDoubleObjectInspector);
ArrayList fname = new ArrayList();
fname.add("ngram");
fname.add("estfrequency");
return ObjectInspectorFactory.getStandardListObjectInspector(
ObjectInspectorFactory.getStandardStructObjectInspector(fname, foi) );
}
}
@Override
public void merge(AggregationBuffer agg, Object partial) throws HiveException {
if(partial == null) {
return;
}
NGramAggBuf myagg = (NGramAggBuf) agg;
List partialNGrams = (List) loi.getList(partial);
int n = Integer.parseInt(partialNGrams.get(partialNGrams.size()-1).toString());
if(myagg.n > 0 && myagg.n != n) {
throw new HiveException(getClass().getSimpleName() + ": mismatch in value for 'n'"
+ ", which usually is caused by a non-constant expression. Found '"+n+"' and '"
+ myagg.n + "'.");
}
myagg.n = n;
partialNGrams.remove(partialNGrams.size()-1);
myagg.nge.merge(partialNGrams);
}
@Override
public Object terminatePartial(AggregationBuffer agg) throws HiveException {
NGramAggBuf myagg = (NGramAggBuf) agg;
ArrayList result = myagg.nge.serialize();
result.add(new Text(Integer.toString(myagg.n)));
return result;
}
private void processNgrams(NGramAggBuf agg, ArrayList seq) throws HiveException {
for(int i = seq.size()-agg.n; i >= 0; i--) {
ArrayList ngram = new ArrayList();
for(int j = 0; j < agg.n; j++) {
ngram.add(seq.get(i+j));
}
agg.nge.add(ngram);
}
}
@Override
public void iterate(AggregationBuffer agg, Object[] parameters) throws HiveException {
assert (parameters.length == 3 || parameters.length == 4);
if(parameters[0] == null || parameters[1] == null || parameters[2] == null) {
return;
}
NGramAggBuf myagg = (NGramAggBuf) agg;
// Parse out 'n' and 'k' if we haven't already done so, and while we're at it,
// also parse out the precision factor 'pf' if the user has supplied one.
if(!myagg.nge.isInitialized()) {
int n = PrimitiveObjectInspectorUtils.getInt(parameters[1], nOI);
int k = PrimitiveObjectInspectorUtils.getInt(parameters[2], kOI);
int pf = 0;
if(n < 1) {
throw new HiveException(getClass().getSimpleName() + " needs 'n' to be at least 1, "
+ "but you supplied " + n);
}
if(k < 1) {
throw new HiveException(getClass().getSimpleName() + " needs 'k' to be at least 1, "
+ "but you supplied " + k);
}
if(parameters.length == 4) {
pf = PrimitiveObjectInspectorUtils.getInt(parameters[3], pOI);
if(pf < 1) {
throw new HiveException(getClass().getSimpleName() + " needs 'pf' to be at least 1, "
+ "but you supplied " + pf);
}
} else {
pf = 1; // placeholder; minimum pf value is enforced in NGramEstimator
}
// Set the parameters
myagg.n = n;
myagg.nge.initialize(k, pf, n);
}
// get the input expression
List outer = (List) outerInputOI.getList(parameters[0]);
if(innerInputOI != null) {
// we're dealing with an array of arrays of strings
for(int i = 0; i < outer.size(); i++) {
List inner = (List) innerInputOI.getList(outer.get(i));
ArrayList words = new ArrayList();
for(int j = 0; j < inner.size(); j++) {
String word = PrimitiveObjectInspectorUtils.getString(inner.get(j), inputOI);
words.add(word);
}
// parse out n-grams, update frequency counts
processNgrams(myagg, words);
}
} else {
// we're dealing with an array of strings
ArrayList words = new ArrayList();
for(int i = 0; i < outer.size(); i++) {
String word = PrimitiveObjectInspectorUtils.getString(outer.get(i), inputOI);
words.add(word);
}
// parse out n-grams, update frequency counts
processNgrams(myagg, words);
}
}
@Override
public Object terminate(AggregationBuffer agg) throws HiveException {
NGramAggBuf myagg = (NGramAggBuf) agg;
return myagg.nge.getNGrams();
}
// Aggregation buffer methods.
static class NGramAggBuf implements AggregationBuffer {
NGramEstimator nge;
int n;
};
@Override
public AggregationBuffer getNewAggregationBuffer() throws HiveException {
NGramAggBuf result = new NGramAggBuf();
result.nge = new NGramEstimator();
reset(result);
return result;
}
@Override
public void reset(AggregationBuffer agg) throws HiveException {
NGramAggBuf result = (NGramAggBuf) agg;
result.nge.reset();
result.n = 0;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy