All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hive.ql.exec.PTFOperator Maven / Gradle / Ivy

Go to download

Hive is a data warehouse infrastructure built on top of Hadoop see http://wiki.apache.org/hadoop/Hive

There is a newer version: 0.11.0-shark-0.9.1
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.hive.ql.exec;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hive.conf.HiveConf;
import org.apache.hadoop.hive.ql.exec.PTFPartition.PTFPartitionIterator;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.plan.ExprNodeGenericFuncDesc;
import org.apache.hadoop.hive.ql.plan.OperatorDesc;
import org.apache.hadoop.hive.ql.plan.PTFDesc;
import org.apache.hadoop.hive.ql.plan.PTFDesc.PTFExpressionDef;
import org.apache.hadoop.hive.ql.plan.PTFDesc.PTFInputDef;
import org.apache.hadoop.hive.ql.plan.PTFDesc.PartitionDef;
import org.apache.hadoop.hive.ql.plan.PTFDesc.PartitionedTableFunctionDef;
import org.apache.hadoop.hive.ql.plan.PTFDesc.WindowExpressionDef;
import org.apache.hadoop.hive.ql.plan.PTFDesc.WindowTableFunctionDef;
import org.apache.hadoop.hive.ql.plan.PTFDeserializer;
import org.apache.hadoop.hive.ql.plan.api.OperatorType;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDFLeadLag;
import org.apache.hadoop.hive.ql.udf.ptf.TableFunctionEvaluator;
import org.apache.hadoop.hive.serde2.SerDe;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorUtils;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorUtils.ObjectInspectorCopyOption;
import org.apache.hadoop.hive.serde2.objectinspector.StructField;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;

public class PTFOperator extends Operator implements Serializable
{

	private static final long serialVersionUID = 1L;
	PTFPartition inputPart;
	boolean isMapOperator;

	transient KeyWrapperFactory keyWrapperFactory;
	protected transient KeyWrapper currentKeys;
	protected transient KeyWrapper newKeys;
	transient HiveConf hiveConf;


	/*
	 * 1. Find out if the operator is invoked at Map-Side or Reduce-side
	 * 2. Get the deserialized QueryDef
	 * 3. Reconstruct the transient variables in QueryDef
	 * 4. Create input partition to store rows coming from previous operator
	 */
	@Override
	protected void initializeOp(Configuration jobConf) throws HiveException
	{
		hiveConf = new HiveConf(jobConf, PTFOperator.class);
		// if the parent is ExtractOperator, this invocation is from reduce-side
		Operator parentOp = getParentOperators().get(0);
		isMapOperator = conf.isMapSide();

		reconstructQueryDef(hiveConf);
    inputPart = createFirstPartitionForChain(
        inputObjInspectors[0], hiveConf, isMapOperator);

		if (isMapOperator)
		{
			PartitionedTableFunctionDef tDef = conf.getStartOfChain();
			outputObjInspector = tDef.getRawInputShape().getOI();
		}
		else
		{
			outputObjInspector = conf.getFuncDef().getOutputShape().getOI();
		}

		setupKeysWrapper(inputObjInspectors[0]);

		super.initializeOp(jobConf);
	}

	@Override
	protected void closeOp(boolean abort) throws HiveException
	{
		super.closeOp(abort);
    if(inputPart.size() != 0){
      if (isMapOperator)
      {
        processMapFunction();
      }
      else
      {
        processInputPartition();
      }
    }
	}

	@Override
	public void processOp(Object row, int tag) throws HiveException
	{
	  if (!isMapOperator )
    {
      /*
       * checkif current row belongs to the current accumulated Partition:
       * - If not:
       *  - process the current Partition
       *  - reset input Partition
       * - set currentKey to the newKey if it is null or has changed.
       */
      newKeys.getNewKey(row, inputPart.getOI());
      boolean keysAreEqual = (currentKeys != null && newKeys != null)?
              newKeys.equals(currentKeys) : false;

      if (currentKeys != null && !keysAreEqual)
      {
        processInputPartition();
        inputPart.reset();
      }

      if (currentKeys == null || !keysAreEqual)
      {
        if (currentKeys == null)
        {
          currentKeys = newKeys.copyKey();
        }
        else
        {
          currentKeys.copyKey(newKeys);
        }
      }
    }

    // add row to current Partition.
    inputPart.append(row);
	}

	/**
	 * Initialize the visitor to use the QueryDefDeserializer Use the order
	 * defined in QueryDefWalker to visit the QueryDef
	 *
	 * @param hiveConf
	 * @throws HiveException
	 */
	protected void reconstructQueryDef(HiveConf hiveConf) throws HiveException
	{

	  PTFDeserializer dS =
	      new PTFDeserializer(conf, (StructObjectInspector)inputObjInspectors[0], hiveConf);
	  dS.initializePTFChain(conf.getFuncDef());
	}

	protected void setupKeysWrapper(ObjectInspector inputOI) throws HiveException
	{
		PartitionDef pDef = conf.getStartOfChain().getPartition();
		ArrayList exprs = pDef.getExpressions();
		int numExprs = exprs.size();
		ExprNodeEvaluator[] keyFields = new ExprNodeEvaluator[numExprs];
		ObjectInspector[] keyOIs = new ObjectInspector[numExprs];
		ObjectInspector[] currentKeyOIs = new ObjectInspector[numExprs];

		for(int i=0; i pItr = outPart.iterator();
	    while (pItr.hasNext())
	    {
	      Object oRow = pItr.next();
	      forward(oRow, outputObjInspector);
	    }
	  }
	}

	protected void processMapFunction() throws HiveException
	{
	  PartitionedTableFunctionDef tDef = conf.getStartOfChain();
    PTFPartition outPart = tDef.getTFunction().transformRawInput(inputPart);
    PTFPartitionIterator pItr = outPart.iterator();
    while (pItr.hasNext())
    {
      Object oRow = pItr.next();
      forward(oRow, outputObjInspector);
    }
	}

	/**
	 * @return the name of the operator
	 */
  @Override
  public String getName() {
    return getOperatorName();
  }

  static public String getOperatorName() {
    return "PTF";
  }


	@Override
	public OperatorType getType()
	{
		return OperatorType.PTF;
	}

	 /**
   * For all the table functions to be applied to the input
   * hive table or query, push them on a stack.
   * For each table function popped out of the stack,
   * execute the function on the input partition
   * and return an output partition.
   * @param part
   * @return
   * @throws HiveException
   */
  private PTFPartition executeChain(PTFPartition part)
      throws HiveException
  {
    Stack fnDefs = new Stack();
    PTFInputDef iDef = conf.getFuncDef();
    while (true)
    {
      if (iDef instanceof PartitionedTableFunctionDef)
      {
        fnDefs.push((PartitionedTableFunctionDef) iDef);
        iDef = ((PartitionedTableFunctionDef) iDef).getInput();
      }
      else
      {
        break;
      }
    }

    PartitionedTableFunctionDef currFnDef;
    while (!fnDefs.isEmpty())
    {
      currFnDef = fnDefs.pop();
      part = currFnDef.getTFunction().execute(part);
    }
    return part;
  }

  /**
   * If WindowingSpec contains any Windowing Expressions or has a
   * Having condition then these are processed
   * and forwarded on. Whereas when there is no having or WdwExprs
   * just forward the rows in the output Partition.
   *
   * For e.g. Consider the following query:
   * 
   * {@code
   *  select rank(), lead(rank(),1),...
   *  from xyz
   *  ...
   *  having rank() > 1
   *  }
   * 
* rank() gets processed as a WdwFn; Its in the oPart(output partition) * argument to executeWindowExprs. Here we first evaluate the having expression. * So the first row of oPart gets filtered out. * Next we evaluate lead(rank()) which is held as a WindowExpression and add it to the output. * * @param ptfDesc * @param oPart output partition after Window Fns are processed. * @param op * @throws HiveException */ private void executeWindowExprs(PTFPartition oPart) throws HiveException { WindowTableFunctionDef wTFnDef = (WindowTableFunctionDef) conf.getFuncDef(); /* * inputOI represents the row with WindowFn results present. * So in the e.g. above it will have a column for 'rank()' */ StructObjectInspector inputOI = wTFnDef.getOutputFromWdwFnProcessing().getOI(); /* * outputOI represents the final row with the Windowing Expressions added. * So in the e.g. above it will have a column for 'lead(rank())' in addition to * all columns in inputOI. */ StructObjectInspector outputOI = wTFnDef.getOutputShape().getOI(); int numCols = outputOI.getAllStructFieldRefs().size(); ArrayList wdwExprs = wTFnDef.getWindowExpressions(); int numWdwExprs = wdwExprs == null ? 0 : wdwExprs.size(); Object[] output = new Object[numCols]; /* * If this Windowing invocation has no Window Expressions and doesn't need to be filtered, * we can just forward the row in the oPart partition. */ boolean forwardRowsUntouched = (wdwExprs == null || wdwExprs.size() == 0 ); PTFPartitionIterator pItr = oPart.iterator(); PTFOperator.connectLeadLagFunctionsToPartition(conf, pItr); while (pItr.hasNext()) { int colCnt = 0; Object oRow = pItr.next(); /* * when there is no Windowing expressions or having; * just forward the Object coming out of the Partition. */ if ( forwardRowsUntouched ) { forward(oRow, outputObjInspector); continue; } /* * Setup the output row columns in the following order * - the columns in the SelectList processed by the PTF * (ie the Select Exprs that have navigation expressions) * - the columns from the final PTF. */ if ( wdwExprs != null ) { for (WindowExpressionDef wdwExpr : wdwExprs) { Object newCol = wdwExpr.getExprEvaluator().evaluate(oRow); output[colCnt++] = newCol; } } for(; colCnt < numCols; ) { StructField field = inputOI.getAllStructFieldRefs().get(colCnt - numWdwExprs); output[colCnt++] = ObjectInspectorUtils.copyToStandardObject(inputOI.getStructFieldData(oRow, field), field.getFieldObjectInspector()); } forward(output, outputObjInspector); } } /** * Create a new Partition. * A partition has 2 OIs: the OI for the rows being put in and the OI for the rows * coming out. You specify the output OI by giving the Serde to use to Serialize. * Typically these 2 OIs are the same; but not always. For the * first PTF in a chain the OI of the incoming rows is dictated by the Parent Op * to this PTFOp. The output OI from the Partition is typically LazyBinaryStruct, but * not always. In the case of Noop/NoopMap we keep the Strcuture the same as * what is given to us. *

* The Partition we want to create here is for feeding the First table function in the chain. * So for map-side processing use the Serde from the output Shape its InputDef. * For reduce-side processing use the Serde from its RawInputShape(the shape * after map-side processing). * @param oi * @param hiveConf * @param isMapSide * @return * @throws HiveException */ public PTFPartition createFirstPartitionForChain(ObjectInspector oi, HiveConf hiveConf, boolean isMapSide) throws HiveException { PartitionedTableFunctionDef tabDef = conf.getStartOfChain(); TableFunctionEvaluator tEval = tabDef.getTFunction(); String partClassName = tEval.getPartitionClass(); int partMemSize = tEval.getPartitionMemSize(); PTFPartition part = null; SerDe serde = isMapSide ? tabDef.getInput().getOutputShape().getSerde() : tabDef.getRawInputShape().getSerde(); part = new PTFPartition(partClassName, partMemSize, serde, (StructObjectInspector) oi); return part; } public static void connectLeadLagFunctionsToPartition(PTFDesc ptfDesc, PTFPartitionIterator pItr) throws HiveException { List llFnDescs = ptfDesc.getLlInfo().getLeadLagExprs(); if (llFnDescs == null) { return; } for (ExprNodeGenericFuncDesc llFnDesc : llFnDescs) { GenericUDFLeadLag llFn = (GenericUDFLeadLag) llFnDesc .getGenericUDF(); llFn.setpItr(pItr); } } }