org.apache.hadoop.hive.ql.optimizer.GenMRRedSink1 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of hive-exec Show documentation
Show all versions of hive-exec Show documentation
Hive is a data warehouse infrastructure built on top of Hadoop see
http://wiki.apache.org/hadoop/Hive
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hive.ql.optimizer;
import java.io.Serializable;
import java.util.HashMap;
import java.util.Map;
import java.util.Stack;
import org.apache.hadoop.hive.ql.exec.Operator;
import org.apache.hadoop.hive.ql.exec.ReduceSinkOperator;
import org.apache.hadoop.hive.ql.exec.Task;
import org.apache.hadoop.hive.ql.lib.Node;
import org.apache.hadoop.hive.ql.lib.NodeProcessor;
import org.apache.hadoop.hive.ql.lib.NodeProcessorCtx;
import org.apache.hadoop.hive.ql.optimizer.GenMRProcContext.GenMapRedCtx;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.plan.MapredWork;
import org.apache.hadoop.hive.ql.plan.OperatorDesc;
/**
* Processor for the rule - table scan followed by reduce sink.
*/
public class GenMRRedSink1 implements NodeProcessor {
public GenMRRedSink1() {
}
/**
* Reduce Sink encountered.
* a) If we are seeing this RS for first time, we initialize plan corresponding to this RS.
* b) If we are seeing this RS for second or later time then either query had a join in which
* case we will merge this plan with earlier plan involving this RS or plan for this RS
* needs to be split in two branches.
*
* @param nd
* the reduce sink operator encountered
* @param opProcCtx
* context
*/
public Object process(Node nd, Stack stack, NodeProcessorCtx opProcCtx,
Object... nodeOutputs) throws SemanticException {
ReduceSinkOperator op = (ReduceSinkOperator) nd;
GenMRProcContext ctx = (GenMRProcContext) opProcCtx;
Map, GenMapRedCtx> mapCurrCtx = ctx
.getMapCurrCtx();
GenMapRedCtx mapredCtx = mapCurrCtx.get(stack.get(stack.size() - 2));
Task extends Serializable> currTask = mapredCtx.getCurrTask();
MapredWork currPlan = (MapredWork) currTask.getWork();
Operator extends OperatorDesc> currTopOp = mapredCtx.getCurrTopOp();
String currAliasId = mapredCtx.getCurrAliasId();
Operator extends OperatorDesc> reducer = op.getChildOperators().get(0);
HashMap, Task extends Serializable>> opTaskMap = ctx
.getOpTaskMap();
Task extends Serializable> opMapTask = opTaskMap.get(reducer);
ctx.setCurrTopOp(currTopOp);
ctx.setCurrAliasId(currAliasId);
ctx.setCurrTask(currTask);
// If the plan for this reducer does not exist, initialize the plan
if (opMapTask == null) {
if (currPlan.getReducer() == null) {
GenMapRedUtils.initPlan(op, ctx);
} else {
GenMapRedUtils.splitPlan(op, ctx);
}
} else {
// This will happen in case of joins. The current plan can be thrown away
// after being merged with the original plan
GenMapRedUtils.joinPlan(op, null, opMapTask, ctx, -1, false);
currTask = opMapTask;
ctx.setCurrTask(currTask);
}
mapCurrCtx.put(op, new GenMapRedCtx(ctx.getCurrTask(), ctx.getCurrTopOp(),
ctx.getCurrAliasId()));
return null;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy