org.apache.hadoop.hive.ql.optimizer.JoinReorder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of hive-exec Show documentation
Show all versions of hive-exec Show documentation
Hive is a data warehouse infrastructure built on top of Hadoop see
http://wiki.apache.org/hadoop/Hive
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hive.ql.optimizer;
import java.util.HashSet;
import java.util.Set;
import org.apache.hadoop.hive.ql.exec.JoinOperator;
import org.apache.hadoop.hive.ql.exec.Operator;
import org.apache.hadoop.hive.ql.exec.ReduceSinkOperator;
import org.apache.hadoop.hive.ql.exec.TableScanOperator;
import org.apache.hadoop.hive.ql.parse.ParseContext;
import org.apache.hadoop.hive.ql.parse.QBJoinTree;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.plan.OperatorDesc;
/**
* Implementation of rule-based join table reordering optimization. User passes
* hints to specify which tables are to be streamed and they are moved to have
* largest tag so that they are processed last. In future, once statistics are
* implemented, this transformation can also be done based on costs.
*/
public class JoinReorder implements Transform {
/**
* Estimate the size of the output based on the STREAMTABLE hints. To do so
* the whole tree is traversed. Possible sizes: 0: the operator and its
* subtree don't contain any big tables 1: the subtree of the operator
* contains a big table 2: the operator is a big table
*
* @param operator
* The operator which output size is to be estimated
* @param bigTables
* Set of tables that should be streamed
* @return The estimated size - 0 (no streamed tables), 1 (streamed tables in
* subtree) or 2 (a streamed table)
*/
private int getOutputSize(Operator extends OperatorDesc> operator,
Set bigTables) {
// If a join operator contains a big subtree, there is a chance that its
// output is also big, so the output size is 1 (medium)
if (operator instanceof JoinOperator) {
for (Operator extends OperatorDesc> o : operator.getParentOperators()) {
if (getOutputSize(o, bigTables) != 0) {
return 1;
}
}
}
// If a table is in bigTables then its output is big (2)
if (operator instanceof TableScanOperator) {
String alias = ((TableScanOperator) operator).getConf().getAlias();
if (bigTables.contains(alias)) {
return 2;
}
}
// For all other kinds of operators, assume the output is as big as the
// the biggest output from a parent
int maxSize = 0;
if (operator.getParentOperators() != null) {
for (Operator extends OperatorDesc> o : operator.getParentOperators()) {
int current = getOutputSize(o, bigTables);
if (current > maxSize) {
maxSize = current;
}
}
}
return maxSize;
}
/**
* Find all big tables from STREAMTABLE hints.
*
* @param joinCtx
* The join context
* @return Set of all big tables
*/
private Set getBigTables(ParseContext joinCtx) {
Set bigTables = new HashSet();
for (QBJoinTree qbJoin : joinCtx.getJoinContext().values()) {
if (qbJoin.getStreamAliases() != null) {
bigTables.addAll(qbJoin.getStreamAliases());
}
}
return bigTables;
}
/**
* Reorder the tables in a join operator appropriately (by reordering the tags
* of the reduces sinks).
*
* @param joinOp
* The join operator to be processed
* @param bigTables
* Set of all big tables
*/
private void reorder(JoinOperator joinOp, Set bigTables) {
int count = joinOp.getParentOperators().size();
// Find the biggest reduce sink
int biggestPos = count - 1;
int biggestSize = getOutputSize(
joinOp.getParentOperators().get(biggestPos), bigTables);
for (int i = 0; i < count - 1; i++) {
int currSize = getOutputSize(joinOp.getParentOperators().get(i),
bigTables);
if (currSize > biggestSize) {
biggestSize = currSize;
biggestPos = i;
}
}
// Reorder tags if need be
if (biggestPos != (count - 1)) {
Byte[] tagOrder = joinOp.getConf().getTagOrder();
Byte temp = tagOrder[biggestPos];
tagOrder[biggestPos] = tagOrder[count - 1];
tagOrder[count - 1] = temp;
// Update tags of reduce sinks
((ReduceSinkOperator) joinOp.getParentOperators().get(biggestPos))
.getConf().setTag(count - 1);
((ReduceSinkOperator) joinOp.getParentOperators().get(count - 1))
.getConf().setTag(biggestPos);
}
}
/**
* Transform the query tree. For each join, check which reduce sink will
* output the biggest result (based on STREAMTABLE hints) and give it the
* biggest tag so that it gets streamed.
*
* @param pactx
* current parse context
*/
public ParseContext transform(ParseContext pactx) throws SemanticException {
Set bigTables = getBigTables(pactx);
for (JoinOperator joinOp : pactx.getJoinContext().keySet()) {
reorder(joinOp, bigTables);
}
return pactx;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy