org.apache.hadoop.hive.ql.udf.UDAFPercentile Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of hive-exec Show documentation
Show all versions of hive-exec Show documentation
Hive is a data warehouse infrastructure built on top of Hadoop see
http://wiki.apache.org/hadoop/Hive
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hive.ql.udf;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDAF;
import org.apache.hadoop.hive.ql.exec.UDAFEvaluator;
import org.apache.hadoop.hive.serde2.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
/**
* UDAF for calculating the percentile values.
* There are several definitions of percentile, and we take the method recommended by
* NIST.
* @see
* Percentile references
*/
@Description(name = "percentile",
value = "_FUNC_(expr, pc) - Returns the percentile(s) of expr at pc (range: [0,1])."
+ "pc can be a double or double array")
public class UDAFPercentile extends UDAF {
/**
* A state class to store intermediate aggregation results.
*/
public static class State {
private Map counts;
private List percentiles;
}
/**
* A comparator to sort the entries in order.
*/
public static class MyComparator implements Comparator> {
@Override
public int compare(Map.Entry o1,
Map.Entry o2) {
return o1.getKey().compareTo(o2.getKey());
}
}
/**
* Increment the State object with o as the key, and i as the count.
*/
private static void increment(State s, LongWritable o, long i) {
if (s.counts == null) {
s.counts = new HashMap();
}
LongWritable count = s.counts.get(o);
if (count == null) {
// We have to create a new object, because the object o belongs
// to the code that creates it and may get its value changed.
LongWritable key = new LongWritable();
key.set(o.get());
s.counts.put(key, new LongWritable(i));
} else {
count.set(count.get() + i);
}
}
/**
* Get the percentile value.
*/
private static double getPercentile(List> entriesList,
double position) {
// We may need to do linear interpolation to get the exact percentile
long lower = (long)Math.floor(position);
long higher = (long)Math.ceil(position);
// Linear search since this won't take much time from the total execution anyway
// lower has the range of [0 .. total-1]
// The first entry with accumulated count (lower+1) corresponds to the lower position.
int i = 0;
while (entriesList.get(i).getValue().get() < lower + 1) {
i++;
}
long lowerKey = entriesList.get(i).getKey().get();
if (higher == lower) {
// no interpolation needed because position does not have a fraction
return lowerKey;
}
if (entriesList.get(i).getValue().get() < higher + 1) {
i++;
}
long higherKey = entriesList.get(i).getKey().get();
if (higherKey == lowerKey) {
// no interpolation needed because lower position and higher position has the same key
return lowerKey;
}
// Linear interpolation to get the exact percentile
return (higher - position) * lowerKey + (position - lower) * higherKey;
}
/**
* The evaluator for percentile computation based on long.
*/
public static class PercentileLongEvaluator implements UDAFEvaluator {
private final State state;
public PercentileLongEvaluator() {
state = new State();
}
public void init() {
if (state.counts != null) {
// We reuse the same hashmap to reduce new object allocation.
// This means counts can be empty when there is no input data.
state.counts.clear();
}
}
/** Note that percentile can be null in a global aggregation with
* 0 input rows: "select percentile(col, 0.5) from t where false"
* In that case, iterate(null, null) will be called once.
*/
public boolean iterate(LongWritable o, Double percentile) {
if (o == null && percentile == null) {
return false;
}
if (state.percentiles == null) {
if (percentile < 0.0 || percentile > 1.0) {
throw new RuntimeException("Percentile value must be wihin the range of 0 to 1.");
}
state.percentiles = new ArrayList(1);
state.percentiles.add(new DoubleWritable(percentile.doubleValue()));
}
if (o != null) {
increment(state, o, 1);
}
return true;
}
public State terminatePartial() {
return state;
}
public boolean merge(State other) {
if (other == null || other.counts == null || other.percentiles == null) {
return false;
}
if (state.percentiles == null) {
state.percentiles = new ArrayList(other.percentiles);
}
for (Map.Entry e: other.counts.entrySet()) {
increment(state, e.getKey(), e.getValue().get());
}
return true;
}
private DoubleWritable result;
public DoubleWritable terminate() {
// No input data.
if (state.counts == null || state.counts.size() == 0) {
return null;
}
// Get all items into an array and sort them.
Set> entries = state.counts.entrySet();
List> entriesList =
new ArrayList>(entries);
Collections.sort(entriesList, new MyComparator());
// Accumulate the counts.
long total = 0;
for (int i = 0; i < entriesList.size(); i++) {
LongWritable count = entriesList.get(i).getValue();
total += count.get();
count.set(total);
}
// Initialize the result.
if (result == null) {
result = new DoubleWritable();
}
// maxPosition is the 1.0 percentile
long maxPosition = total - 1;
double position = maxPosition * state.percentiles.get(0).get();
result.set(getPercentile(entriesList, position));
return result;
}
}
/**
* The evaluator for percentile computation based on long for an array of percentiles.
*/
public static class PercentileLongArrayEvaluator implements UDAFEvaluator {
private final State state;
public PercentileLongArrayEvaluator() {
state = new State();
}
public void init() {
if (state.counts != null) {
// We reuse the same hashmap to reduce new object allocation.
// This means counts can be empty when there is no input data.
state.counts.clear();
}
}
public boolean iterate(LongWritable o, List percentiles) {
if (state.percentiles == null) {
if(percentiles != null) {
for (int i = 0; i < percentiles.size(); i++) {
if (percentiles.get(i).get() < 0.0 || percentiles.get(i).get() > 1.0) {
throw new RuntimeException("Percentile value must be wihin the range of 0 to 1.");
}
}
state.percentiles = new ArrayList(percentiles);
}
else {
state.percentiles = new ArrayList();
}
}
if (o != null) {
increment(state, o, 1);
}
return true;
}
public State terminatePartial() {
return state;
}
public boolean merge(State other) {
if (other == null || other.counts == null || other.percentiles == null) {
return true;
}
if (state.percentiles == null) {
state.percentiles = new ArrayList(other.percentiles);
}
for (Map.Entry e: other.counts.entrySet()) {
increment(state, e.getKey(), e.getValue().get());
}
return true;
}
private List results;
public List terminate() {
// No input data
if (state.counts == null || state.counts.size() == 0) {
return null;
}
// Get all items into an array and sort them
Set> entries = state.counts.entrySet();
List> entriesList =
new ArrayList>(entries);
Collections.sort(entriesList, new MyComparator());
// accumulate the counts
long total = 0;
for (int i = 0; i < entriesList.size(); i++) {
LongWritable count = entriesList.get(i).getValue();
total += count.get();
count.set(total);
}
// maxPosition is the 1.0 percentile
long maxPosition = total - 1;
// Initialize the results
if (results == null) {
results = new ArrayList();
for (int i = 0; i < state.percentiles.size(); i++) {
results.add(new DoubleWritable());
}
}
// Set the results
for (int i = 0; i < state.percentiles.size(); i++) {
double position = maxPosition * state.percentiles.get(i).get();
results.get(i).set(getPercentile(entriesList, position));
}
return results;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy