All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.berkeley.nlp.PCFGLA.HierarchicalAdaptiveGrammar Maven / Gradle / Ivy

Go to download

The Berkeley parser analyzes the grammatical structure of natural language using probabilistic context-free grammars (PCFGs).

The newest version!
/**
 * 
 */
package edu.berkeley.nlp.PCFGLA;

import edu.berkeley.nlp.PCFGLA.smoothing.Smoother;
import edu.berkeley.nlp.syntax.Trees.PennTreeRenderer;
import edu.berkeley.nlp.util.PriorityQueue;

/**
 * @author petrov
 *
 */
public class HierarchicalAdaptiveGrammar extends HierarchicalGrammar {
	
	private static final long serialVersionUID = 1L;
	
	public HierarchicalAdaptiveGrammar(short[] nSubStates, boolean findClosedPaths, Smoother smoother, Grammar oldGrammar, double thresh) {
		super(nSubStates, findClosedPaths, smoother, oldGrammar, thresh);
	}


	public HierarchicalAdaptiveGrammar(Grammar gr){
		super(gr.numSubStates,gr.findClosedPaths,gr.smoother,gr,gr.threshold);
		
		for (BinaryRule oldRule : gr.binaryRuleMap.keySet()) {
			HierarchicalAdaptiveBinaryRule newRule = new HierarchicalAdaptiveBinaryRule(oldRule);
			addBinary(newRule);
		}
		for (UnaryRule oldRule : gr.unaryRuleMap.keySet()) {
			HierarchicalAdaptiveUnaryRule newRule = new HierarchicalAdaptiveUnaryRule(oldRule);
			addUnary(newRule);
		}
		if (true) {
			closedSumRulesWithParent = closedViterbiRulesWithParent = unaryRulesWithParent;
			closedSumRulesWithChild = closedViterbiRulesWithChild = unaryRulesWithC;
		}
		else computePairsOfUnaries(); 
		makeCRArrays();
		isGrammarTag = gr.isGrammarTag;
	}

	
	public HierarchicalAdaptiveGrammar newInstance(short[] newNumSubStates) {
		return new HierarchicalAdaptiveGrammar(newNumSubStates,this.findClosedPaths,this.smoother,this,this.threshold);
	}

   void printLevelCounts(){
  	 int nBinaryParams=0, nUnaryParams=0, nBinaryFringeParams=0, nUnaryFringeParams=0;
  	 PriorityQueue pQb = new PriorityQueue();
  	 PriorityQueue pQu = new PriorityQueue();
		for (int state = 0; state < numStates; state++) {
			int[] counts = new int[8];
			BinaryRule[] parentRules = this.splitRulesWithP(state);
			if (parentRules.length==0) continue;
			double totalParamState =0, totalRulesState = 0;
			for (int i = 0; i < parentRules.length; i++) {
				HierarchicalAdaptiveBinaryRule r =(HierarchicalAdaptiveBinaryRule)parentRules[i];
//				PennTreeRenderer.render(r.hierarchy);
				counts[r.hierarchy.getDepth()]++;
				nBinaryParams += r.countNonZeroFeatures();
				int n = r.countNonZeroFringeFeatures();
				nBinaryFringeParams += n;
				pQb.add(r,n);
				totalParamState+=n;
				totalRulesState++;
			}
  		System.out.print(tagNumberer.object(state)+", binary rules per level: ");
  		
  		for (int i=1; i<8; i++){
  			System.out.print(counts[i]+" ");
  		}
  		System.out.print(" with \n "+tagNumberer.object(state)+"\t"+ totalParamState/totalRulesState +"\n parameters on average :'\n");
		}
//		for (int i=0; i<6; i++){
//			System.out.println(counts[i]+" binary rules are split upto level "+i);
//			counts[i] = 0;
//		}
		for (int state = 0; state < numStates; state++) {
			int[] counts = new int[8];
			UnaryRule[] unaries = this.getClosedSumUnaryRulesByParent(state);
			//this.getClosedSumUnaryRulesByParent(state);//
			if (unaries.length==0) continue;
			for (int r = 0; r < unaries.length; r++) {
				HierarchicalAdaptiveUnaryRule ur =(HierarchicalAdaptiveUnaryRule)unaries[r];
//				ur.toString();
//				PennTreeRenderer.render(ur.hierarchy);
				counts[ur.hierarchy.getDepth()]++;
				nUnaryParams += ur.countNonZeroFeatures();
				int n = ur.countNonZeroFringeFeatures();
				nUnaryFringeParams += n;
//				totalParamState+=n;
//				totalRulesState++;
				pQu.add(ur,n);
			}
  		System.out.print(tagNumberer.object(state)+", unary rules per level: ");
  		for (int i=1; i<8; i++){
  			System.out.print(counts[i]+" ");
  		}
  		System.out.print("\n");
		}
		System.out.println("There are "+nBinaryParams+" binary features, of which "+ nBinaryFringeParams+" are on the fringe.");
		System.out.println("There are "+nUnaryParams+" unary features, of which "+ nUnaryFringeParams+" are on the fringe.");
		System.out.println("There are "+(nBinaryParams+nUnaryParams)+" total features, of which "+ (nBinaryFringeParams+nUnaryFringeParams)+" are on the fringe.");
		while (pQb.hasNext()){
			HierarchicalAdaptiveBinaryRule r = pQb.next();
			System.out.println(r.toStringShort()+"\t"+r.countNonZeroFringeFeatures());
		}
		while (pQu.hasNext()){
			HierarchicalAdaptiveUnaryRule r = pQu.next();
			System.out.println(r.toStringShort()+"\t"+r.countNonZeroFringeFeatures());
		}
//		for (int i=0; i<6; i++){
//			System.out.println(counts[i]+" unary rules are split upto level "+i);
//		}

	}


}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy