All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ngmf.util.cosu.BranchAndBound Maven / Gradle / Ivy

Go to download

Object Modeling System (OMS) is a pure Java object-oriented framework. OMS v3.+ is a highly interoperable and lightweight modeling framework for component-based model and simulation development on multiple platforms.

There is a newer version: 3.5.12
Show newest version
/*
 * $Id: BranchAndBound.java 50798ee5e25c 2013-01-09 [email protected] $
 * 
 * This file is part of the Object Modeling System (OMS),
 * 2007-2012, Olaf David and others, Colorado State University.
 *
 * OMS is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, version 2.1.
 *
 * OMS is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with OMS.  If not, see .
 */
package ngmf.util.cosu;

import java.util.ArrayList;
import java.util.Random;
import java.util.Stack;
import java.util.Vector;
import oms3.util.Statistics;

/**
 *
 * @author od
 */
public class BranchAndBound {

    class HyperCube {

        protected Sample a;
        protected Sample b;
        protected Sample midPoint;
        protected double L;
        protected ArrayList InCubeSamples;
        public double goodOneFactor;
        protected HyperCube parent;
        protected double highestLowBound;

        HyperCube(Sample a, Sample b, Sample midPoint, HyperCube parent) {
            this.a = a;
            this.b = b;
            this.midPoint = midPoint;
            this.parent = parent;
            this.InCubeSamples = new ArrayList();
            InCubeSamples.add(a);
            InCubeSamples.add(b);
            InCubeSamples.add(midPoint);
            this.L = ApproxL(a, b, this);
            if (parent != null) {
                highestLowBound = Math.max(Math.max(-1000000000000.0,
                        Math.max(a.fx, b.fx) - VectorNorm2(VectorMul(VectorSub(b.x, a.x), L))),
                        midPoint.fx - VectorNorm2(VectorMul(VectorSub(b.x, a.x), L)) / 2.0);
            }

            double minimum = Math.min(Math.min(a.fx, b.fx), midPoint.fx);
            if (highestLowBound > minimum) {
                highestLowBound = minimum;
            }

            goodOneFactor = ((midPoint.fx - a.fx) + (midPoint.fx - b.fx));
        }

        public void addCubeSample(Sample x) {
            this.InCubeSamples.add(x);
        }

        double CalculateLForTarget(double target) {
            //look which L value can realize highestLowBound
            double L_theo1 = (Math.max(a.fx, b.fx) - target) / VectorNorm(VectorSub(b.x, a.x));
            double L_theo2 = 2.0 * (midPoint.fx - target) / VectorNorm(VectorSub(b.x, a.x));

            return Math.min(L_theo1, L_theo2);
        }

        double bound() {
            return highestLowBound;
        }

        public String compactDescriptionString() {
            String s = "";
            s += a.x[0] + "\t";
            s += a.x[1] + "\t";
            s += highestLowBound + "\n";
            s += b.x[0] + "\t";
            s += a.x[1] + "\t";
            s += highestLowBound + "\n";
            s += b.x[0] + "\t";
            s += b.x[1] + "\t";
            s += highestLowBound + "\n";
            s += a.x[0] + "\t";
            s += b.x[1] + "\t";
            s += highestLowBound + "\n";
            return s;
        }

        public String toString() {
            return "a:" + a.toString() + "\nb:" + b.toString() + "\nmidPoint:" + midPoint.toString() + "\nbound:" + highestLowBound;
        }
    }

    double[] VectorAdd(double[] a, double[] b) {
        double sum[] = new double[a.length];
        for (int i = 0; i < a.length; i++) {
            sum[i] = a[i] + b[i];
        }
        return sum;
    }

    double[] VectorAdd(double[] a, double b) {
        double sum[] = new double[a.length];
        for (int i = 0; i < a.length; i++) {
            sum[i] = a[i] + b;
        }
        return sum;
    }

    double[] VectorSub(double[] a, double[] b) {
        double sum[] = new double[a.length];
        for (int i = 0; i < a.length; i++) {
            sum[i] = a[i] - b[i];
        }
        return sum;
    }

    double[] VectorMul(double[] a, double mul) {
        double result[] = new double[a.length];
        for (int i = 0; i < a.length; i++) {
            result[i] = a[i] * mul;
        }
        return result;
    }

    double[] VectorMul(double[] a, double[] mul) {
        double result[] = new double[a.length];
        for (int i = 0; i < a.length; i++) {
            result[i] = a[i] * mul[i];
        }
        return result;
    }

    boolean VectorLessEq(double[] x, double[] y) {
        for (int i = 0; i < x.length; i++) {
            if (x[i] > y[i] - 0.000001) {
                return false;
            }
        }
        return true;
    }

    double VectorNorm(double[] v) {
        double sum = 0;
        for (int i = 0; i < v.length; i++) {
            sum += Math.abs(v[i]);//*v[i];
        }
        return sum;//Math.sqrt(sum);
    }

    double VectorNorm2(double[] v) {
        double sum = 0;
        for (int i = 0; i < v.length; i++) {
            sum += (v[i] * v[i]);//*v[i];
        }
        return Math.sqrt(sum);//Math.sqrt(sum);
    }

    double VectorMaxNorm(double[] v) {
        double sum = 0;
        for (int i = 0; i < v.length; i++) {
            sum = Math.max(Math.abs(v[i]), sum);//*v[i];
        }
        return sum;//Math.sqrt(sum);
    }

    double VectorMin(double[] v) {
        double sum = 0;
        for (int i = 0; i < v.length; i++) {
            sum = Math.min(v[i], sum);//*v[i];
        }
        return sum;//Math.sqrt(sum);
    }

    int getMin(Vector Q) {
        double min = Double.MAX_VALUE;
        int index = 0;
        for (int i = 0; i < Q.size(); i++) {
            if (Q.get(i).fx < min) {
                min = Q.get(i).fx;
                index = i;
            }
        }
        return index;
    }
    double test = 0;
    double[] lowBound;
    double[] upBound;
    int mode;
    int currentSampleCount;
    double effValue;
    int maxn;
    int n;
    double[] parameters;
    Vector sampleList = new Vector();
    Random generator = new Random();


    Sample getSample(double[] x) {
        Sample s = new Sample(x, funct(x));
        sampleList.add(s);
        return s;
    }

    double funct(double x[]) {
        //RefreshDataHandles();
        for (int j = 0; j < parameters.length; j++) {
            try {
                parameters[j] = x[j];
            } catch (Exception e) {
                throw new RuntimeException("Error! Parameter No. " + j + " wasn^t found" + e.toString());
            }
        }
        // singleRun();

        double value = effValue;
        //sometimes its a bad idea to calculate with NaN or Infty
        double bigNumber = 10000000;

        effValue = Math.max(effValue, -bigNumber);
        effValue = Math.min(effValue, bigNumber);

        if (Double.isNaN(effValue)) {
            effValue = -bigNumber;
        }

        currentSampleCount++;

        switch (mode) {
            case Statistics.MINIMIZATION:
                return value;
            case Statistics.MAXIMIZATION:
                return -value;
            case Statistics.ABSMINIMIZATION:
                return Math.abs(value);
            case Statistics.ABSMAXIMIZATION:
                return -Math.abs(value);
            default:
                return 0.0;
        }
    }

    double[] randomSample() {
        double[] sample = new double[n];
        for (int i = 0; i < n; i++) {
            sample[i] = (lowBound[i] + generator.nextDouble() * (upBound[i] - lowBound[i]));
        }
        return sample;
    }

    double ApproxL(Sample a, Sample b, HyperCube myCube) {
        lowBound = a.x;
        upBound = b.x;

        ArrayList list = myCube.InCubeSamples;
        if (myCube.parent != null) {
            for (int i = 0; i < myCube.parent.InCubeSamples.size(); i++) {
                Sample x = myCube.parent.InCubeSamples.get(i);
                if (VectorLessEq(a.x, x.x) && VectorLessEq(x.x, b.x) && !list.contains(x)) {
                    boolean contains = false;
                    for (int j = 0; j < list.size(); j++) {
                        if (VectorNorm(VectorSub(list.get(j).x, x.x)) < 0.0001) {
                            contains = true;
                            break;
                        }
                    }
                    if (!contains) {
                        myCube.addCubeSample(x);
                    }
                }
            }
        }
        while (list.size() < 3 * n + 1) {
            Sample rnd_point = getSample(randomSample());
            if (rnd_point.fx < a.fx && rnd_point.fx < b.fx) {
                test = a.fx - rnd_point.fx + b.fx - rnd_point.fx;
            }
            myCube.addCubeSample(rnd_point);
        }

        //single value L
        double variance = 0;
        double mean = 0;
        //Stack tmp = new Stack();

        double sL = 0;
        double size = (list.size() - 1) * (list.size()) / 2.0;
        for (int i = 0; i < list.size(); i++) {
            for (int j = i + 1; j < list.size(); j++) {
                double d = VectorNorm2(VectorSub(list.get(i).x, list.get(j).x));
                sL = Math.max(Math.abs((list.get(i).fx - list.get(j).fx) / d), sL);
                mean += sL;
            //tmp.push(new Double(sL));
            }
        }
        mean /= size;
        return sL;
    }

   
    public void run() {

        Vector Q = new Vector();
        Vector cubes = new Vector();

        int xCount = 0;
        final double epsilon1 = 0.1; //app-error
        double gamma, myR, my;
        int k = 1;

        System.out.println("***************************");
        System.out.println("****start optimization ****");
        System.out.println("***************************");

        Sample a = getSample(lowBound);
        Sample b = getSample(upBound);

        //add upperleft und lowerright corner of cube
        Q.add(a);
        Q.add(b);
        //midpoint xr
        double xR_tmp[] = VectorMul(VectorAdd(lowBound, upBound), 0.5);
        Sample xR = getSample(xR_tmp);
        Q.add(xR);

        //gamma holds minimum of samples
        int IndexWithMinimum = getMin(Q);
        Sample v = Q.get(IndexWithMinimum);
        gamma = v.fx;

        //calculate a lower approximation my
        HyperCube R = new HyperCube(a, b, xR, null);
        cubes.add(R);

        double L = R.L;

        myR = Math.max(Math.max(a.fx, b.fx) - VectorNorm(VectorMul(VectorSub(a.x, b.x), L)),
                xR.fx - (VectorNorm(VectorMul(VectorSub(a.x, b.x), L)) / 2.0));
        my = myR;

        Stack queue = new Stack();
        queue.push(R);

        while (true) {
            R = queue.pop();
            a = R.a;
            b = R.b;
            my = R.highestLowBound;

            //System.out.println("Processing next cube:\nR:" + R.toString() + "\nMinimum:" + gamma + "\nk:" + k + "\nSampleCount:" + currentSampleCount);
            //SaveCubes(cubes,"cubedump" + xCount + ".dat");
            if (maxn > 0) {
                if (sampleList.size() >= maxn) {
                    break;
                }
            }
            //current minimum and lower approximation are close
            if (gamma - my < epsilon1) {
                //break;
            }
            int sel_j = 0;
            double max = 0;
            for (int i = 0; i < n; i++) {
                if (b.x[i] - a.x[i] > max) {
                    max = b.x[i] - a.x[i];
                    sel_j = i;
                }
            }
            Sample a1 = a;
            double b1_tmp[] = new double[n];
            double a2_tmp[] = new double[n];
            Sample b2 = b;

            for (int i = 0; i < n; i++) {
                if (i == sel_j) {
                    b1_tmp[i] = (a.x[i] + b.x[i]) / 2.0;
                    a2_tmp[i] = (a.x[i] + b.x[i]) / 2.0;
                } else {
                    b1_tmp[i] = b.x[i];
                    a2_tmp[i] = a.x[i];
                }
            }
            Sample b1 = getSample(b1_tmp);
            Sample a2 = getSample(a2_tmp);

            double xR1_tmp[] = VectorMul(VectorAdd(a1.x, b1.x), 0.5);
            double xR2_tmp[] = VectorMul(VectorAdd(a2.x, b2.x), 0.5);

            Sample xR1 = getSample(xR1_tmp);
            Sample xR2 = getSample(xR2_tmp);

            //approx L
            HyperCube R1 = new HyperCube(a1, b1, xR1, R);
            double L1 = R1.L;
            double tmp1 = test;
            
            HyperCube R2 = new HyperCube(a2, b2, xR2, R);
            double L2 = R2.L;
            double tmp2 = test;

            Q.clear();
            Q.add(v);
            Q.add(b1);
            Q.add(xR1);
            Q.add(a2);
            Q.add(xR2);

            IndexWithMinimum = getMin(Q);
            v = Q.get(IndexWithMinimum);
            gamma = v.fx;

            if (R1.goodOneFactor < tmp1) {
                R1.goodOneFactor = tmp1;
            }

            if (R2.goodOneFactor < tmp2) {
                R2.goodOneFactor = tmp2;
            }
            cubes.remove(R);
            cubes.add(R1);
            cubes.add(R2);

            my = Double.MAX_VALUE;//gamma;
            xCount++;
            if (!queue.empty()) {
                continue;
            }

            //double T[] = {0,0.0001,0.001,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10,0.11,0.12,0.13,0.15,0.20,0.25,0.3,0.4,0.5,0.75,1.0,1.5,2.0,3.0,6.0};
            double T[] = {0.0};
            //double T[] = {0,0.0001,0.001,0.01,0.05,0.10,0.25,0.5,1.0,2.0,5.0};
            int IndexForT[] = new int[T.length];

            for (int t = 0; t < T.length; t++) {
                int best = -1;
                double bestLdiff = 10000000000.0;

                for (int i = 0; i < cubes.size(); i++) {
                    HyperCube c = cubes.get(i);

                    double Lstar = c.CalculateLForTarget(gamma - T[t]);
                    //double Ldiff = Lstar - c.L;//VectorSub(Lstar , c.L);
                    double Ldiff = c.highestLowBound;

                    if (Ldiff < bestLdiff) {
                        best = i;
                        bestLdiff = Ldiff;
                    }
                    if (xCount % 20 == 19) {
                        best = 0;
                        bestLdiff = Ldiff;
                        break;
                    }
                }
                IndexForT[t] = best;
            }

            for (int i = 0; i < IndexForT.length; i++) {
                if (IndexForT[i] == -1) {
                    continue;
                }
                for (int j = i + 1; j < IndexForT.length; j++) {
                    if (IndexForT[i] == IndexForT[j]) {
                        IndexForT[j] = -1;
                    }
                }
                //System.out.println("add T =" + T[i]);
                queue.push(cubes.get(IndexForT[i]));
            }
            k++;
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy