ngmf.util.cosu.DDS Maven / Gradle / Ivy
/*
* $Id: DDS.java 50798ee5e25c 2013-01-09 [email protected] $
*
* This file is part of the Object Modeling System (OMS),
* 2007-2012, Olaf David and others, Colorado State University.
*
* OMS is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, version 2.1.
*
* OMS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with OMS. If not, see .
*/
package ngmf.util.cosu;
import java.util.Random;
/**
* Dynamically dimensioned Search (DDS) version 1.1 algorithm by Bryan Tolson
* Fortran version (original was coded in Matlab)
* Coded in Nov 2005 by Bryan Tolson
*
* DDS is an n-dimensional continuous global optimization algorithm. It is coded as a
* minimizer but built into the code is a hidden transformation to make it capable of
* solving a maximization problem. In a maximization problem, the algorithm minimizes
* the negative of the objective function F (-1*F). User specifies in inputs
* whether it is a max or a min problem.
*
* REFERENCE FOR THIS ALGORITHM:
* Tolson, B. A., and C. A. Shoemaker (2007), Dynamically dimensioned search algorithm
* for computationally efficient watershed model calibration, Water Resour. Res., 43,
* W01413, doi:10.1029/2005WR004723.
*
* @author od (java translation)
*/
public class DDS {
int user_seed;
int maxiter;
String runname, ini_name;
String[] DVnames;
double r_val;
int num_dec = 0;
double[] s_min = null;
double[] s_max = null;
double[] ini_soln = null;
double[] initials = null;
// DDS Output declarations
double[] Ftests;
double[] Fbests;
double[] sbest;
double[] stest = null;
double[][] stests = null;
double Fbest, to_max;
int[] f_count;
Random rand = new Random();
void dds() {
int ini_fevals = Math.max(5, (int) Math.round(0.005 * maxiter));
int ileft = maxiter - ini_fevals;
double fvalue = 0;
double Ftest;
for (int i = 0; i < ini_fevals; i++) {
// sample an initial solution candidate (uniform random sampling):
for (int j = 0; j < num_dec; j++) {
double ranval = rand.nextDouble();
stest[j] = s_min[j] + ranval * (s_max[j] - s_min[j]);
}
// Evaluate solution and return objective function value (fvalue), for example see grie10.f
fvalue = obj_func(stest);
Ftest = to_max * fvalue; // to_max is 1.0 for MIN problems, -1 for MAX problems
if (i == 1) {
// Fbest must be initialized
// track best solution found so far and corresponding obj function value
Fbest = Ftest;
sbest = stest;
}
if (Ftest <= Fbest) {
// update current (best) solution
Fbest = Ftest;
sbest = stest;
}
// accumulate DDS initialization outputs
f_count[i] = i;
Ftests[i] = to_max * Ftest; // candidate solution objective function value (untransformed)
Fbests[i] = to_max * Fbest; // best current solution objective function value (untransformed)
stests[i] = stest; // candidate solution (decision variable values)
// write(*,*) f_count(i), to_max*Fbest ! *** user uncomment if desired ***
}
for (int i = 0; i < ileft; i++) {
double Pn = 1.0 - Math.log((double) i+1) / Math.log((double) ileft); // probability each DV selected
int dvn_count = 0; // counter for how many DVs selected for perturbation
stest = sbest; // define stest initially as best current solution
for (int j = 0; j < num_dec; j++) {
double ranval = rand.nextDouble();
if (ranval < Pn) {
dvn_count++;
// call 1-D perturbation function to get new DV value (new_value)
double new_value = neigh_value(sbest[j], s_min[j], s_max[j], r_val);
// note that r_val is the value of the DDS r perturbation size parameter (0.2 by default)
stest[j] = new_value; //change relevant DV value in stest
}
}
if (dvn_count == 0) {
// no DVs selected at random, so select ONE
double ranval = rand.nextDouble();
int dv = (int) Math.ceil(num_dec * ranval);
// call 1-D perturbation function to get new DV value (new_value)
double new_value = neigh_value(sbest[dv], s_min[dv], s_max[dv], r_val);
stest[dv] = new_value; //change relevant DV value in stest
}
// Evaluate obj function value (fvalue) for stest, for example see grie10.f:
fvalue = obj_func(stest);
Ftest = to_max * fvalue; // to_max handles min (=1) and max (=-1) problems,
if (Ftest <= Fbest) { // update current best solution
Fbest = Ftest;
sbest = stest;
}
// accumulate DDS search history
int ind1 = i + ini_fevals; // proper index for storage
f_count[ind1] = ind1;
Ftests[ind1] = to_max * Ftest;
Fbests[ind1] = to_max * Fbest;
stests[ind1] = stest;
}
}
/**
* Purpose is to generate a neighboring decision variable value for a single
* decision variable value being perturbed by the DDS optimization algorithm.
* New DV value respects the upper and lower DV bounds.
* Coded by Bryan Tolson, Nov 2005.
* I/O variable definitions:
* x_cur - current decision variable (DV) value
* x_min - min DV value
* x_max - max DV value
* r - the neighborhood perturbation factor
* new_value - new DV variable value (within specified min and max)
*/
private double neigh_value(double x_cur, double x_min, double x_max, double r) {
double ranval, zvalue, new_value;
double work3, work2 = 0, work1 = 0;
double x_range = x_max - x_min;
// ------------ generate a standard normal random variate (zvalue) -------------------
// perturb current value with normal random variable
// CALL DRNNOA(1,zvalue) // generates a standard normal random deviate
// ISML Stat Library 2 routine - Acceptance/rejection
// Below returns a standard Gaussian random number based upon Numerical recipes gasdev and
// Marsagalia-Bray Algorithm
work3 = 2.0;
while (work3 >= 1.0 || work3 == 0.0) {
ranval = rand.nextDouble();
work1 = 2.0 * ranval - 1.0;
ranval = rand.nextDouble();
work2 = 2.0 * ranval - 1.0;
work3 = work1 * work1 + work2 * work2;
}
// was dlog() !!!
work3 = Math.pow((-2.0 * Math.log(work3)) / work3, 0.5); // natural log
// pick one of two deviates at random (don't worry about trying to use both):
ranval = rand.nextDouble();
if (ranval < 0.5) {
zvalue = work1 * work3;
} else {
zvalue = work2 * work3;
}
// ------------ done standard normal random variate generation -----------------
// calculate new decision variable value:
new_value = x_cur + zvalue * r * x_range;
// check new value is within DV bounds. If not, bounds are reflecting.
if (new_value < x_min) {
new_value = x_min + (x_min - new_value);
if (new_value > x_max) {
// if reflection goes past x_max { value should be x_min since
// without reflection the approach goes way past lower bound.
// This keeps x close to lower bound when x_cur is close to lower bound
// Practically speaking, this should never happen with r values <0.3
new_value = x_min;
}
} else if (new_value > x_max) {
new_value = x_max - (new_value - x_max);
if (new_value < x_min) {
// if reflection goes past x_min { value should be x_max for same reasons as above
new_value = x_max;
}
}
return new_value;
}
/*
* This is the Griewank Function (2-D or 10-D)
* Bound: X(i)=[-600,600], for i=1,2,...,10
* Global minimum: 0, at origin
* Coded originally by Q Duan. Editted for incorporation into Fortran DDS algorithm by
* Bryan Tolson, Nov 2005.
* DDS users should make their objective functions follow this framework
* user function arguments must be the same as above for the Griewank function
* I/O Variable definitions:
* x_values an array of decision variable values (size nopt)
* return the value of the objective function with x_values as input
*/
private double obj_func(double[] x_values) {
int nopt = x_values.length;
double d = (nopt == 2) ? 200.0 : 4000.0;
double u1 = 0.0;
double u2 = 1.0;
for (int i = 0; i < nopt; i++) {
u1 += (x_values[i] * x_values[i]) / d;
u2 *= Math.cos(x_values[i] / Math.sqrt((double) i+1));
}
return u1 - u2 + 1;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy