All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ngmf.util.cosu.MOCOM Maven / Gradle / Ivy

Go to download

Object Modeling System (OMS) is a pure Java object-oriented framework. OMS v3.+ is a highly interoperable and lightweight modeling framework for component-based model and simulation development on multiple platforms.

There is a newer version: 3.5.12
Show newest version
/*
 * $Id: MOCOM.java 50798ee5e25c 2013-01-09 [email protected] $
 * 
 * This file is part of the Object Modeling System (OMS),
 * 2007-2012, Olaf David and others, Colorado State University.
 *
 * OMS is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, version 2.1.
 *
 * OMS is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with OMS.  If not, see .
 */
package ngmf.util.cosu;
/*
 * ABCGradientDescent.java
 * Created on 30. Juni 2006, 15:12
 *
 * This file is part of JAMS
 * Copyright (C) 2005 S. Kralisch and P. Krause
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 *
 */
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.*;
import oms3.util.Statistics;

/**
 *
 */
public class MOCOM {

    static class MOCOM_Comparator implements Comparator {

        private int col = 0;
        private int order = 1;

        public MOCOM_Comparator(int col, boolean decreasing_order) {
            this.col = col;
            if (decreasing_order) {
                order = -1;
            } else {
                order = 1;
            }
        }

        @Override
        public int compare(double[] b1, double[] b2) {

            if (b1[col] < b2[col]) {
                return -1 * order;
            } else if (b1[col] == b2[col]) {
                return 0 * order;
            } else {
                return 1 * order;
            }
        }

    }
    //
    public String parameterIDs;
    public String boundaries;
    public String effMethodNames;
    public double[] effValues;
    public int[] MaximizeEff;
    public boolean enable;
    public String fileName;
    double[] parameters;
    String[] parameterNames;
    String[] effNames;
    double[] lowBound;
    double[] upBound;
   
    PrintWriter writer;
    int N; //parameter dimension
    int M; //output dimension
    int n; //number of complexes
    int icall = 0;
    boolean continousOutput = false;
    Random generator = new Random();

    void init() throws FileNotFoundException {
        writer = new PrintWriter(fileName);
        for (int p = 0; p < this.parameterNames.length; p++) {
            writer.print(this.parameterNames[p] + " ");
        }
        for (int p = 0; p < this.effNames.length; p++) {
            writer.print(this.effNames[p] + " ");
        }
        writer.flush();
    }

    private double random() {
        return generator.nextDouble();
    }

    boolean isSampleValid(double[] sample) {
        for (int i = 0; i < parameterNames.length; i++) {
            if (sample[i] < lowBound[i] || sample[i] > upBound[i]) {
                return false;
            }
        }
        return true;
    }

    double[] compob(double x[]) {
        for (int j = 0; j < parameters.length; j++) {
            parameters[j] = x[j];
        }

//        singleRun();
        // modelrun !!!!!!!!!

        double F[] = new double[M];
        for (int i = 0; i < M; i++) {
            if (MaximizeEff[i] == Statistics.MINIMIZATION) {
                F[i] = effValues[i];
            } else if (MaximizeEff[i] == Statistics.ABSMINIMIZATION) {
                F[i] = Math.abs(effValues[i]);
            } else if (MaximizeEff[i] == Statistics.ABSMAXIMIZATION) {
                F[i] = -Math.abs(effValues[i]);
            } else if (MaximizeEff[i] == Statistics.MAXIMIZATION) {
                F[i] = -effValues[i];
            }
        }
        return F;
    }

    public void sort(double x[][], int col) {
        Arrays.sort(x, new MOCOM_Comparator(col, false));
    }

    int[] randperm(int upto) {
        int perm[] = new int[upto];
        int freenums[] = new int[upto];

        for (int i = 0; i < upto; i++) {
            freenums[i] = i + 1;
        }
        for (int i = 1; i <= upto; i++) {
            int num = (int) Math.floor(random() * (upto + 1 - i) + 1.0);
            perm[i - 1] = freenums[num - 1];
            freenums[num - 1] = freenums[upto - i];
        }
        return perm;
    }

    double[][] lhsu(double[] xmin, double[] xmax, int nsample) {
        int nvar = xmin.length;
        double s[][] = new double[nsample][nvar];
        for (int j = 0; j < nvar; j++) {
            int[] idx = randperm(nsample);
            for (int i = 0; i < nsample; i++) {
                double P = (idx[i] - random()) / (double) nsample;
                s[i][j] = xmin[j] + P * (xmax[j] - xmin[j]);
            }
        }
        return s;
    }

    double[][] compf(double[][] D, int m) {
        int s = D.length, r = 0;
        if (s == 0) {
            return null;
        } else {
            r = D[0].length;
        }
        double F[][] = new double[s][];
        for (int i = 0; i < s; i++) {
            F[i] = compob(D[i]);
        }
        return F;
    }

    int intMax(int R[]) {
        int RMax = Integer.MIN_VALUE;
        for (int i = 0; i < R.length; i++) {
            if (RMax < R[i]) {
                RMax = R[i];
            }
        }
        return RMax;
    }

    Object[] parrank(double[][] ObjVals, int nmbOfObjs) {
        // Pareto ranking of individuals in population
        int nmbOfIndivs = ObjVals.length;
        // set of individuals a particular individual dominates
        @SuppressWarnings("unchecked")
        Vector[] dominated = new Vector[nmbOfIndivs];
        // Pareto-optimal fronts
        Vector> front = new Vector>();

        // number of Pareto-optimal front for each individual; 2nd highest priority sorting key
        int nmbOfFront[] = new int[nmbOfIndivs];
        // number of individuals by which a particular individual is dominated
        int nmbOfDominating[] = new int[nmbOfIndivs];

        for (int i = 0; i < nmbOfIndivs; i++) {
            nmbOfFront[i] = 0;
            nmbOfDominating[i] = 0;
            dominated[i] = new Vector();
        }

        for (int p = 0; p < nmbOfIndivs; p++) {
            for (int q = 0; q < nmbOfIndivs; q++) {
                int sumA1 = 0, sumA2 = 0;
                int sumB1 = 0, sumB2 = 0;
                for (int k = 0; k < nmbOfObjs; k++) {
                    if (ObjVals[p][k] <= ObjVals[q][k]) {
                        sumA1++;
                    }
                    if (ObjVals[p][k] < ObjVals[q][k]) {
                        sumA2++;
                    }
                }
                for (int k = 0; k < nmbOfObjs; k++) {
                    if (ObjVals[q][k] <= ObjVals[p][k]) {
                        sumB1++;
                    }
                    if (ObjVals[q][k] < ObjVals[p][k]) {
                        sumB2++;
                    }
                }
                if (sumA1 == nmbOfObjs && sumA2 > 0) {
                    dominated[p].addElement(new Integer(q));
                } else if (sumB1 == nmbOfObjs && sumB2 > 0) {
                    nmbOfDominating[p]++;
                }
            }
            if (nmbOfDominating[p] == 0) {
                nmbOfFront[p] = 1;
                if (front.size() == 0) {
                    front.add(new Vector());
                }
                front.get(0).add(p);
            }
        }

        int i = 0;
        while (front.get(i).size() != 0) {
            Vector nextFront = new Vector();
            for (int k = 0; k < front.get(i).size(); k++) {
                int p = front.get(i).get(k).intValue();
                for (int l = 0; l < dominated[p].size(); l++) {
                    int q = dominated[p].get(l);
                    nmbOfDominating[q]--;
                    if (nmbOfDominating[q] == 0) {
                        nmbOfFront[q] = i + 2;
                        nextFront.add(new Integer(q));
                    }
                }
            }
            i++;
            front.add(nextFront);
        }
        Integer RMax = intMax(nmbOfFront);
        return new Object[]{ nmbOfFront, RMax};
    }

    double[] asswght(int R[], int RMax, int s) {
        double P[] = new double[s];
        double sum = 0;
        for (int i = 0; i < R.length; i++) {
            sum += R[i];
        }
        for (int i = 0; i < s; i++) {
            P[i] = (RMax - R[i] + 1) / ((double) (RMax + 1) * s - sum);
        }
        return P;
    }

    Object[] worst(double D[][], int n, int R[], int Rmax) {
        //[L] = find(R==Rmax);
        Vector Ltmp = new Vector();

        for (int i = 0; i < R.length; i++) {
            if (R[i] == Rmax) {
                Ltmp.add(new Integer(i));
            }
        }
        int L[] = new int[Ltmp.size()];
        for (int i = 0; i < Ltmp.size(); i++) {
            L[i] = Ltmp.get(i).intValue();
        }

        int nA = L.length;
        double A[][] = new double[nA][n];
        for (int i = 0; i < L.length; i++) {
            for (int j = 0; j < n; j++) {
                A[i][j] = D[L[i]][j];
            }
        }
        return new Object[]{A, L, new Integer(nA)};
    }

    Object[] choose(double P[], double D[][], double F[][], int Rank[], int n) {
        double sP[] = new double[P.length];
        double sum = 0;
        int counter = 0;
        int Selected[] = new int[n];
        double S1[][] = new double[n][D[0].length];
        double F1[][] = new double[n][F[0].length];
        int R1[] = new int[n];

        for (int i = 0; i < P.length; i++) {
            sP[i] = (sum += P[i]);
        }

        while (counter < n) {
            double U;
            int R = -1;
            boolean multipleOccurrences = false;
            do {
                multipleOccurrences = false;
                // Draw random number U between 0 and 1 using a uniform distribution
                U = random(); //generator.nextDouble();
                // Combine labelled U with trapezoidal probability
                for (int i = 0; i < P.length; i++) {
                    if (U < sP[i]) {
                        R = i;
                        break;
                    }
                }
                for (int i = 0; i < counter; i++) {
                    if (Selected[i] == R) {
                        multipleOccurrences = true;
                        break;
                    }
                }
            } while (multipleOccurrences == true);

            Selected[counter] = R;
            for (int j = 0; j < D[0].length; j++) {
                S1[counter][j] = D[R][j];
            }
            for (int j = 0; j < F[0].length; j++) {
                F1[counter][j] = F[R][j];
            }
            R1[counter] = Rank[R];
            counter++;
        }
        return new Object[]{S1, F1, R1};
    }

    // Function performs multi objective downhill simplex
    Object[] mosim(double S[][], double SF[][], int SR[], int n, double minn[], double maxn[]) {
        int lenS = S[0].length;
        int lenSF = SF[0].length;

//        int e = S.length;
        int r = lenS + lenSF + 1;
        // Define Simplex .. Simplex = [S SF SR];
        double Simplex[][] = new double[S.length][lenS + lenSF + 1];

        for (int i = 0; i < S.length; i++) {
            for (int j = 0; j < lenS; j++) {
                Simplex[i][j] = S[i][j];
            }
            for (int j = 0; j < lenSF; j++) {
                Simplex[i][lenS + j] = SF[i][j];
            }
            Simplex[i][lenS + lenSF] = (double) SR[i];
        }
        // Sort Simplex
        sort(Simplex, r - 1);
        //Assing function values for worst point in Simplex
        double Fw[] = new double[lenSF];
        for (int i = 0; i < lenSF; i++) {
            Fw[i] = Simplex[Simplex.length - 1][n + i];
        }
        // Assing parameter values worst ranked point in Simplex
        double Sw[] = new double[n];
        for (int i = 0; i < n; i++) {
            Sw[i] = Simplex[Simplex.length - 1][i];
        }
        double Sg[] = new double[n];
        // Compute centroid of Simplex after excluding the worst ranked point
        for (int i = 0; i < n; i++) {
            Sg[i] = 0;
            for (int j = 0; j < Simplex.length - 1; j++) {
                Sg[i] += Simplex[j][i];
            }
            Sg[i] /= (double) (Simplex.length - 1);
        }
        // Compute Reflection step
        double Sref[] = new double[n];
        for (int i = 0; i < n; i++) {
            Sref[i] = 2 * Sg[i] - Sw[i];
        }
        boolean accept = isSampleValid(Sref);
        double Snew[], Fnew[];
        if (!accept) {
            // Compute contraction step
            double Scon[] = new double[n];
            for (int i = 0; i < n; i++) {
                Scon[i] = 0.5 * Sg[i] + 0.5 * Sw[i];
            }
            accept = isSampleValid(Scon);
            //if it fails again, try a mutation
            while (!accept) {
                double newpar[][] = lhsu(this.lowBound, this.upBound, 1);
                Scon = newpar[0];
                accept = isSampleValid(Scon);
            }
            double Fcon[] = compob(Scon);
            Snew = Scon;
            Fnew = Fcon;
        // Update number of function evaluations
        } else {
            // Compute corresponding objective function values
            double Fref[] = compob(Sref);
            double SimplexTmp[][] = new double[Simplex.length][lenSF];
            for (int j = 0; j < lenSF; j++) {
                for (int i = 0; i < Simplex.length - 1; i++) {
                    SimplexTmp[i][j] = Simplex[i][n + j];
                }
                SimplexTmp[Simplex.length - 1][j] = Fref[j];
            }
            // Test for non dominance
            Object ret[] = parrank(SimplexTmp, 2); // 2 ist possible wrong
            int Rref[] = (int[]) ret[0];

            int Rrefmax = Integer.MIN_VALUE;
            for (int i = 0; i < Rref.length - 1; i++) {
                if (Rref[i] > Rrefmax) {
                    Rrefmax = Rref[i];
                }
            }
            if (Rref[Rref.length - 1] <= Rrefmax) {
                Snew = Sref;
                Fnew = Fref;
            } else {
                // Compute contraction step
                double Scon[] = new double[n];
                for (int i = 0; i < n; i++) {
                    Scon[i] = 0.5 * Sg[i] + 0.5 * Sw[i];
                }
                accept = isSampleValid(Scon);
                //if it fails again, try a mutation
                while (!accept) {
                    double newpar[][] = lhsu(this.lowBound, this.upBound, 1);
                    Scon = newpar[0];
                    accept = isSampleValid(Scon);
                }
                // Compute corresponding objective function values
                double Fcon[] = compob(Scon);
                Snew = Scon;
                Fnew = Fcon;
            }
        }
        for (int i = 0; i < n; i++) {
            S[S.length - 1][i] = Snew[i];
        }
        for (int i = 0; i < SF[0].length; i++) {
            SF[SF.length - 1][i] = Fnew[i];
        }
        return new Object[]{S, SF};
    }

    public Object[] update(double D[][], int L[], double A[][], int n, int nA, double F[][], double FA[][]) {
        // Replace A into D and FA into F using the indices stored in L,
        for (int i = 0; i < nA; i++) {
            for (int j = 0; j < n; j++) {
                D[L[i]][j] = A[i][j];
            }
            for (int j = 0; j < FA[0].length; j++) {
                F[L[i]][j] = FA[i][j];
            }
        }
        return new Object[]{D, F};
    }

    // n - number of params
    // s - populationsize
    // minn/maxn - define feasible space
    // m - dont know
    // MaxIter - maximum iteration count
    public Object[] mocom(int n, int s, double minn[], double maxn[], int m, int MaxIter) {
        // Start with generating the initial population
        double D[][] = lhsu(minn, maxn, s);
        // Compute the objective function value for each point
        double F[][] = compf(D, m);
        // Now save some important variables
        int nobj = F[0].length;
        // Now do Pareto ranking
        Object ret[] = parrank(F, nobj);
        int R[] = (int[]) ret[0];
        int Rmax = ((Integer) ret[1]).intValue();
        // Now start optimization loop
        int loopcounter = 1;
        while (Rmax > 1) {
            // Assign selection probability P(i) to each of the members
            double P[] = asswght(R, Rmax, s);

            // Construct A to be the points having largest ranks
            ret = worst(D, n, R, Rmax);
            double A[][] = (double[][]) ret[0]; //A <- worst Points
            int L[] = (int[]) ret[1];
            int nA = ((Integer) ret[2]).intValue();

            // Select n points from D to generate Simplex
            ret = choose(P, D, F, R, n);
            double S1[][] = (double[][]) ret[0];
            double F1[][] = (double[][]) ret[1];
            int R1[] = (int[]) ret[2];

            double FA[][] = new double[nA][F[0].length];

            for (int j = 0; j < nA; j++) {
                //addsim
                if (S1.length != F1.length || F1.length != R1.length) {
                    throw new RuntimeException("Component " + this + ": internal error.");
                }
                //build S,SF,SR
                double S[][] = new double[S1.length + 1][S1[0].length];
                double SF[][] = new double[F1.length + 1][F1[0].length];
                int SR[] = new int[R1.length + 1];

                for (int c1 = 0; c1 < S1.length; c1++) {
                    for (int c2 = 0; c2 < S1[0].length; c2++) {
                        S[c1][c2] = S1[c1][c2];
                    }
                    for (int c2 = 0; c2 < F1[0].length; c2++) {
                        SF[c1][c2] = F1[c1][c2];
                    }
                    SR[c1] = R1[c1];
                }
                for (int c1 = 0; c1 < S1[0].length; c1++) {
                    S[S1.length][c1] = A[j][c1];
                }

                for (int c1 = 0; c1 < F1[0].length; c1++) {
                    SF[F1.length][c1] = F[L[j]][c1];
                }
                SR[R1.length] = R[L[j]];

                //mosim
                Object res[] = mosim(S, SF, SR, n, minn, maxn);

                S = (double[][]) res[0];
                SF = (double[][]) res[1];

                for (int c1 = 0; c1 < n; c1++) {
                    A[j][c1] = S[S.length - 1][c1];
                }
                for (int c1 = 0; c1 < FA[j].length; c1++) {
                    FA[j][c1] = SF[SF.length - 1][c1];
                }
            }
            ret = update(D, L, A, n, nA, F, FA);
            D = (double[][]) ret[0];
            F = (double[][]) ret[1];

            // Compute paretorank for each of the parameter sets according to Goldberg, 1989
            ret = parrank(F, nobj);
            R = (int[]) ret[0];
            Rmax = ((Integer) ret[1]).intValue();
            //System.out.println("Evolution Loop:" + loopcounter + " - Trial - " + icall);

            double currentResult[][] = new double[s][N + M + 1];
            for (int i = 0; i < s; i++) {
                for (int j = 0; j < N; j++) {
                    currentResult[i][j] = D[i][j];
                }
                for (int j = 0; j < M; j++) {
                    currentResult[i][N + j] = F[i][j];
                }
                currentResult[i][N + M] = R[i];
            }
            sort(currentResult, N + M);

            int c = 0;
            if (continousOutput) {
                while (c < s && loopcounter % 10 == 0) {
                    //writer.write("Parameter: ");
                    writer.write("" + currentResult[c][N + M] + "\t");
                    for (int i = 0; i < N; i++) {
                        writer.write("" + currentResult[c][i] + "\t");
                    }
                    //System.out.print("Function - Values:");
                    for (int i = 0; i < M; i++) {
                        writer.write("" + currentResult[c][N + i] + "\t");
                    }
                    //System.out.print("Rank:");
                    //System.out.println("");
                    c++;
                    writer.println("");
                    writer.flush();
                }
            }
            loopcounter++;
            if (MaxIter < loopcounter) {
                System.out.println("********************************************");
                System.out.println("---------->OPTIMIZATION STOP<---------------");
                System.out.println("--->MAXIMUM NUMBER OF LOOPS HAS REACHED<----");
                System.out.println("********************************************");
                c = 0;
                System.out.print("Rank\t");
                for (int i = 0; i < N; i++) {
                    System.out.print(this.parameterNames[i] + "\t");
                }
                for (int i = 0; i < M; i++) {
                    System.out.print(this.effNames[i] + "\t");
                }
                System.out.println("");
                while (c < s) {
                    System.out.print("" + currentResult[c][N + M] + "\t");
                    for (int i = 0; i < N; i++) {
                        System.out.print("" + currentResult[c][i] + "\t");
                    }
                    for (int i = 0; i < M; i++) {
                        System.out.print("" + currentResult[c][N + i] + "\t");
                    }
                    System.out.println("");
                    c++;
                }
                c = 0;
                writer.println("Number of model runs: " + icall);
                writer.write("Rank\t");
                for (int i = 0; i < N; i++) {
                    writer.write(this.parameterNames[i] + "\t");
                }
                for (int i = 0; i < M; i++) {
                    writer.write(this.effNames[i] + "\t");
                }
                writer.write("\n");
                while (c < s) {
                    writer.write("" + currentResult[c][N + M] + "\t");
                    for (int i = 0; i < N; i++) {
                        writer.write("" + currentResult[c][i] + "\t");
                    }
                    for (int i = 0; i < M; i++) {
                        writer.write("" + currentResult[c][N + i] + "\t");
                    }
                    c++;
                    writer.println("");
                    writer.flush();
                }
                writer.flush();
                break;
            }
            if (Rmax <= 1) {
                System.out.println("********************************************");
                System.out.println("---------->OPTIMIZATION STOP<---------------");
                System.out.println("-------------->SUCCESSFUL<------------------");
                System.out.println("********************************************");
                c = 0;
                System.out.print("Rank\t");
                for (int i = 0; i < N; i++) {
                    System.out.print(this.parameterNames[i] + "\t");
                }
                for (int i = 0; i < M; i++) {
                    System.out.print(this.effNames[i] + "\t");
                }
                System.out.println("");

                while (c < s) {
                    System.out.print("" + currentResult[c][N + M] + "\t");
                    for (int i = 0; i < N; i++) {
                        System.out.print("" + currentResult[c][i] + "\t");
                    }
                    for (int i = 0; i < M; i++) {
                        System.out.print("" + currentResult[c][N + i] + "\t");
                    }
                    System.out.println("");
                    c++;
                }
                c = 0;
                writer.println("Number of model runs: " + this.icall);
                writer.write("Rank\t");
                for (int i = 0; i < N; i++) {
                    writer.write(this.parameterNames[i] + "\t");
                }
                for (int i = 0; i < M; i++) {
                    writer.write(this.effNames[i] + "\t");
                }
                writer.println();
                while (c < s) {
                    writer.write("" + currentResult[c][N + M] + "\t");
                    for (int i = 0; i < N; i++) {
                        writer.write("" + currentResult[c][i] + "\t");
                    }
                    for (int i = 0; i < M; i++) {
                        writer.write("" + currentResult[c][N + i] + "\t");
                    }
                    c++;
                    writer.println();
                    writer.flush();
                }
                writer.flush();
            }
        }
        return new Object[]{D, F, R, new Integer(Rmax)};
    }

    public void run() {
        double[] lowBound = null;
        double[] upBound = null;
        int N = 0; //parameter dimension
        int s = 0; //population size
        int m = 0; //complex size; floor(s/q)
        int maxIter = 0;
        Object ret[] = mocom(N, s, lowBound, upBound, m, maxIter);
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy