edu.emory.mathcs.nlp.learning.optimization.AdaptiveGradientDescent Maven / Gradle / Ivy
The newest version!
/**
* Copyright 2015, Emory University
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package edu.emory.mathcs.nlp.learning.optimization;
import edu.emory.mathcs.nlp.common.util.MathUtils;
import edu.emory.mathcs.nlp.learning.optimization.reguralization.Regularizer;
import edu.emory.mathcs.nlp.learning.util.MajorVector;
import edu.emory.mathcs.nlp.learning.util.WeightVector;
/**
* @author Jinho D. Choi ({@code [email protected]})
*/
public abstract class AdaptiveGradientDescent extends StochasticGradientDescent
{
private static final long serialVersionUID = 9194316873258304736L;
protected final float EPSILON = 0.00001f;
public transient WeightVector diagonals;
public AdaptiveGradientDescent(WeightVector vector, float learningRate, float bias)
{
this(vector, learningRate, bias, null);
}
public AdaptiveGradientDescent(WeightVector vector, float learningRate, float bias, Regularizer rda)
{
super(vector, learningRate, bias, rda);
diagonals = weight_vector.createZeroVector();
}
@Override
protected boolean expand(int sparseFeatureSize, int denseFeatureSize, int labelSize)
{
boolean b = super.expand(sparseFeatureSize, denseFeatureSize, labelSize);
if (b) diagonals.expand(sparseFeatureSize, denseFeatureSize, labelSize);
return b;
}
@Override
protected float getLearningRate(int index, boolean sparse)
{
MajorVector d = diagonals.getMajorVector(sparse);
return learning_rate / (EPSILON + (float)Math.sqrt(d.get(index)));
}
protected void updateDiagonal(int y, int xi, float gradient, boolean sparse)
{
MajorVector d = diagonals.getMajorVector(sparse);
d.add(y, xi, MathUtils.sq(gradient));
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy