edu.emory.mathcs.nlp.learning.util.Instance Maven / Gradle / Ivy
The newest version!
/**
* Copyright 2015, Emory University
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package edu.emory.mathcs.nlp.learning.util;
import java.io.Serializable;
/**
* @author Jinho D. Choi ({@code [email protected]})
*/
public class Instance implements Serializable
{
private static final long serialVersionUID = 7998185354380065988L;
private FeatureVector vector;
private float[] scores;
private String string_label;
private int gold_label;
private int predicted_label;
// =================================== CONSTRUCTORS ===================================
public Instance(String label, FeatureVector vector)
{
setStringLabel(label);
setFeatureVector(vector);
}
public Instance(String label, SparseVector sparseVector, float[] denseVector)
{
setStringLabel(label);
setFeatureVector(new FeatureVector(sparseVector, denseVector));
}
public Instance(String label, SparseVector vector)
{
setStringLabel(label);
setFeatureVector(new FeatureVector(vector));
}
public Instance(String label, float[] vector)
{
setStringLabel(label);
setFeatureVector(new FeatureVector(vector));
}
public Instance(int label, FeatureVector vector)
{
setGoldLabel(label);
setFeatureVector(vector);
}
public Instance(int label, SparseVector sparseVector, float[] denseVector)
{
setGoldLabel(label);
setFeatureVector(new FeatureVector(sparseVector, denseVector));
}
public Instance(int label, SparseVector vector)
{
setGoldLabel(label);
setFeatureVector(new FeatureVector(vector));
}
public Instance(int label, float[] vector)
{
setGoldLabel(label);
setFeatureVector(new FeatureVector(vector));
}
// =================================== GETTERS & SETTERS ===================================
public String getStringLabel()
{
return string_label;
}
public void setStringLabel(String label)
{
this.string_label = label;
}
public boolean hasStringLabel()
{
return string_label != null;
}
public boolean isStringLabel(String label)
{
return label.equals(string_label);
}
public int getGoldLabel()
{
return gold_label;
}
public void setGoldLabel(int label)
{
gold_label = label;
}
public boolean isGoldLabel(int label)
{
return label == gold_label;
}
public int getPredictedLabel()
{
return predicted_label;
}
public void setPredictedLabel(int label)
{
predicted_label = label;
}
public FeatureVector getFeatureVector()
{
return vector;
}
public void setFeatureVector(FeatureVector vector)
{
this.vector = vector;
}
public float[] getScores()
{
return scores;
}
public void setScores(float[] scores)
{
this.scores = scores;
}
public boolean hasScores()
{
return scores != null;
}
// =================================== STRING VECTOR ===================================
// public Instance(String label, StringVector stringVector, float[] denseVector)
// {
// setStringLabel(label);
// setFeatureVector(new FeatureVector(stringVector, denseVector));
// }
//
// public Instance(int label, StringVector stringVector, float[] denseVector)
// {
// setGoldLabel(label);
// setFeatureVector(new FeatureVector(stringVector, denseVector));
// }
//
// public Instance(String label, StringVector vector)
// {
// setStringLabel(label);
// setFeatureVector(new FeatureVector(vector));
// }
//
// public Instance(int label, StringVector vector)
// {
// setGoldLabel(label);
// setFeatureVector(new FeatureVector(vector));
// }
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy