All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.mines.jtk.dsp.WarpFunction1 Maven / Gradle / Ivy

The newest version!
/****************************************************************************
Copyright 2012, Colorado School of Mines and others.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
****************************************************************************/
package edu.mines.jtk.dsp;

import static edu.mines.jtk.util.ArrayMath.*;

/**
 * Synthetic warping functions for 1-D sequences.
 * The function u(x) describes the warping, in which a point x
 * is displaced to a point y(x) = x+u(x).
 * 

* Warping is the computation of the sequence g(y) = f(x(y)). * Unwarping is the computation of the sequence f(x) = g(y(x)). *

* For warping, we need the function x(y) = y-u(x(y)) = y-uy(y). We * compute the displacement uy(y) by iteration so that uy(y) = u(x(y)). *

* We also define a midpoint m(x) = (x+y(x))/2, and compute the * displacement um(m) = u(x(m)) from u(x) by iteration so that * um(m) = u(x(m)). * @author Dave Hale, Colorado School of Mines * @version 2011.08.30 */ public abstract class WarpFunction1 { /** * Returns a warping for a constant shift. * @param u shift. * @param n number of samples. * @return a constant-shift 1d warping function. */ public static WarpFunction1 constant(double u, int n) { return new ConstantWarp1(u,n); } /** * Returns a derivative-of-Gaussian warping. * @param u maximum shift. * @param n number of samples. * @return a derivative-of-Gaussian 1d warping function. */ public static WarpFunction1 gaussian(double u, int n) { return new GaussianWarp1(u,n); } /** * Returns a sinusoidal warping. * @param u maximum shift. * @param n number of samples. * @return a sinusoidal 1d warping function. */ public static WarpFunction1 sinusoid(double u, int n) { return new SinusoidWarp1(u,n); } /** * Returns a constant-plus-sinusoidal warping. * @param c constant shift. * @param u maximum sinusoidal shift. * @param n number of samples. * @return a constant-plus-sinusoidal 1d warping function. */ public static WarpFunction1 constantPlusSinusoid(double c, double u, int n) { return new SinusoidWarp1(c,u,n); } /** * Returns the shift u(x). * @param x the coordinate x. * @return the shift. */ public abstract double u(double x); /** * Returns the shift u(x). * @param x the coordinate x. * @return the shift. */ public double ux(double x) { return u(x); } /** * Returns the shift um(m) = u(x(m)). * @param m the coordinate m. * @return the shift. */ public double um(double m) { double um = 0.0; double up; do { up = um; um = u(m-0.5*um); } while (abs(um-up)>0.0001); return um; } /** * Returns the shift uy(y) = u(x(y)). * @param y the coordinate y. * @return the shift. */ public double uy(double y) { double uy = 0.0; double up; do { up = uy; uy = u(y-uy); } while (abs(uy-up)>0.0001); return uy; } /** * Returns an array[n] of shifts u(x). * @return array of shifts. */ public float[] ux() { float[] u = new float[_n]; for (int i=0; i<_n; ++i) { double x = i; u[i] = (float)ux(x); } return u; } /** * Returns an array[n] of shifts um(m) = u(x(m)). * @return array of shifts. */ public float[] um() { float[] u = new float[_n]; for (int i=0; i<_n; ++i) { double m = i; u[i] = (float)um(m); } return u; } /** * Returns an array[n] of shifts uy(y) = u(x(y)). * @return array of shifts. */ public float[] uy() { float[] u = new float[_n]; for (int i=0; i<_n; ++i) { double y = i; u[i] = (float)uy(y); } return u; } /** * Warps a sampled function. * @param f array of values f(x). * @return array of values g(y) = f(y-u(x(y)). */ public float[] warp(float[] f) { SincInterpolator si = new SincInterpolator(); float[] g = new float[_n]; for (int i=0; i<_n; ++i) { double y = i; double x = y-uy(y); g[i] = si.interpolate(_n,1.0,0.0,f,x); } return g; } /** * Unwarps a sampled function. * @param g array of values g(x). * @return array of values f(x) = g(x+u(x)). */ public float[] unwarp(float[] g) { SincInterpolator si = new SincInterpolator(); float[] f = new float[_n]; for (int i=0; i<_n; ++i) { double x = i; double y = x+ux(x); f[i] = si.interpolate(_n,1.0,0.0,g,y); } return f; } protected WarpFunction1(int n) { _n = n; } /////////////////////////////////////////////////////////////////////////// // private private int _n; /** * Constant (zero-strain) warping. */ private static class ConstantWarp1 extends WarpFunction1 { public ConstantWarp1(double u, int n) { super(n); _u = u; } public double u(double x) { return _u; } public double umax() { return _u; } public double e(double x) { return 0.0; } public double emax() { return 0.0; } private double _u; } /** * Derivative-of-Gaussian warping. */ private static class GaussianWarp1 extends WarpFunction1 { public GaussianWarp1(double umax, int n) { super(n); _a = (n-1)/2.0; _b = _a/3; _c = umax*exp(0.5)/_b; _umax = umax; _emax = _c; } public double u(double x) { double xa = x-_a; return -_c*xa*exp(-0.5*(xa*xa)/(_b*_b)); } public double umax() { return _umax; } public double e(double x) { double xa = x-_a; return -_c*(1.0-(xa*xa)/(_b*_b))*exp(-0.5*(xa*xa)/(_b*_b)); } public double emax() { return _emax; } private double _a; private double _b; private double _c; private double _umax; private double _emax; } /** * Sinusoidal warping. */ private static class SinusoidWarp2 extends WarpFunction2 { public SinusoidWarp2(double u1max, double u2max, int n1, int n2) { this(0.0,0.0,u1max,u2max,n1,n2); } public SinusoidWarp2( double u1add, double u2add, double u1max, double u2max, int n1, int n2) { super(n1,n2); double l1 = n1-1; double l2 = n2-1; _c1 = u1add; _c2 = u2add; _a1 = u1max; _a2 = u2max; _b1 = 2.0*PI/l1; _b2 = 2.0*PI/l2; } public double u1(double x1, double x2) { return _c1+_a1*sin(_b1*x1)*sin(0.5*_b2*x2); } public double u2(double x1, double x2) { return _c2+_a2*sin(_b2*x2)*sin(0.5*_b1*x1); } private double _a1,_a2; private double _b1,_b2; private double _c1,_c2; } /** * Sinusoidal warping. */ private static class SinusoidWarp1 extends WarpFunction1 { public SinusoidWarp1(double umax, int n) { this(0.0,umax,n); } public SinusoidWarp1(double uadd, double umax, int n) { super(n); double l = n-1; _a = umax; _b = 2.0*PI/l; _c = uadd; _umax = umax; _emax = _a*_b; } public double u(double x) { return _c+_a*sin(_b*x); } public double umax() { return _umax; } public double e(double x) { return _a*_b*cos(_b*x); } public double emax() { return _emax; } private double _a,_b,_c; private double _umax; private double _emax; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy