edu.mines.jtk.dsp.ZeroMask Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of edu-mines-jtk Show documentation
Show all versions of edu-mines-jtk Show documentation
Java packages for science and engineering
The newest version!
/****************************************************************************
Copyright 2010, Colorado School of Mines and others.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
****************************************************************************/
package edu.mines.jtk.dsp;
import edu.mines.jtk.util.Check;
import static edu.mines.jtk.util.ArrayMath.*;
/**
* A mask for samples that are zero or near zero.
* Values in the mask image are either true or false. Samples for which
* the mask is false may be unreliable in some applications, and this
* class can be used to identify these samples.
*
* For example, at samples in 3D images where the zero mask is false,
* we may set structure tensors to represent default horizontal layering.
*
* A sample in the mask is set to false if the mean absolute value
* of samples in a local Gaussian window is less than some specified
* fraction of the global mean absolute value of all image samples.
* Note that the global mean can be altered significantly by just a
* few samples with unusually large negative or positive values. Such
* outliers should be replaced before constructing a zero mask.
*
* @author Dave Hale, Colorado School of Mines
* @version 2009.09.09
*/
public class ZeroMask {
/**
* Constructs a zero mask for a 2D image.
* The mask will be zero for samples where the local mean absolute
* amplitude is less than the specified small fraction of the global
* mean absolute amplitude.
* @param small a small fraction; e.g., 0.1.
* @param sigma1 Gaussian window half-width for 1st dimension.
* @param sigma2 Gaussian window half-width for 2nd dimension.
* @param x array of image values from which mask is derived.
*/
public ZeroMask(
double small, double sigma1, double sigma2,
float[][] x)
{
_n1 = x[0].length;
_n2 = x.length;
float[][] t = abs(x);
float a = ((sum(t)/_n1)/_n2); // global mean absolute amplitude
RecursiveGaussianFilter rgf1 = new RecursiveGaussianFilter(sigma1);
RecursiveGaussianFilter rgf2 = new RecursiveGaussianFilter(sigma2);
float[][] b = zerofloat(_n1,_n2);
rgf1.apply0X(t,b);
rgf2.applyX0(b,t);
_mask2 = new boolean[_n2][_n1];
for (int i2=0; i2<_n2; ++i2) {
for (int i1=0; i1<_n1; ++i1) {
_mask2[i2][i1] = t[i2][i1]>=small*a;
}
}
}
/**
* Constructs a zero mask for a 3D image.
* @param small small value; zeros in mask where labs < small*gabs.
* @param sigma1 Gaussian window half-width for 1st dimension.
* @param sigma2 Gaussian window half-width for 2nd dimension.
* @param sigma3 Gaussian window half-width for 3rd dimension.
* @param x array of image values from which mask is derived.
*/
public ZeroMask(
double small, double sigma1, double sigma2, double sigma3,
float[][][] x)
{
_n1 = x[0][0].length;
_n2 = x[0].length;
_n3 = x.length;
float[][][] t = abs(x);
float a = ((sum(t)/_n1)/_n2)/_n3; // global mean absolute amplitude
RecursiveGaussianFilter rgf1 = new RecursiveGaussianFilter(sigma1);
RecursiveGaussianFilter rgf2 = new RecursiveGaussianFilter(sigma2);
RecursiveGaussianFilter rgf3 = new RecursiveGaussianFilter(sigma3);
float[][][] b = zerofloat(_n1,_n2,_n3);
rgf1.apply0XX(t,b);
rgf2.applyX0X(b,t);
rgf3.applyXX0(t,b); // local mean absolute amplitude
_mask3 = new boolean[_n3][_n2][_n1];
for (int i3=0; i3<_n3; ++i3) {
for (int i2=0; i2<_n2; ++i2) {
for (int i1=0; i1<_n1; ++i1) {
_mask3[i3][i2][i1] = b[i3][i2][i1]>=small*a;
}
}
}
}
/**
* Constructs a zero mask from a specified array of floats.
* Mask is true for all non-zero samples in the array; false, otherwise.
* @param x array of values from which mask is derived.
*/
public ZeroMask(float[][] x) {
_n1 = x[0].length;
_n2 = x.length;
_mask2 = new boolean[_n2][_n1];
for (int i2=0; i2<_n2; ++i2) {
for (int i1=0; i1<_n1; ++i1) {
if (x[i2][i1]!=0.0f)
_mask2[i2][i1] = true;
}
}
}
/**
* Constructs a zero mask from a specified array of floats.
* Mask is true for all non-zero samples in the array; false, otherwise.
* @param x array of values from which mask is derived.
*/
public ZeroMask(float[][][] x) {
_n1 = x[0][0].length;
_n2 = x[0].length;
_n3 = x.length;
_mask3 = new boolean[_n3][_n2][_n1];
for (int i3=0; i3<_n3; ++i3) {
for (int i2=0; i2<_n2; ++i2) {
for (int i1=0; i1<_n1; ++i1) {
if (x[i3][i2][i1]!=0.0f)
_mask3[i3][i2][i1] = true;
}
}
}
}
/**
* Returns a 2D array of floats representing this mask.
* The returned array has values 0.0f (false) and 1.0f (true).
* @return mask array of floats.
*/
public float[][] getAsFloats2() {
Check.state(_mask2!=null,"mask constructed for a 2D image");
float[][] mask = new float[_n2][_n1];
getAsFloats(mask);
return mask;
}
/**
* Fills a 2D array of floats representing this mask.
* The returned array has values 0.0f (false) and 1.0f (true).
* @param mask array of floats representing this mask.
*/
public void getAsFloats(float[][] mask) {
Check.state(_mask2!=null,"mask constructed for a 2D image");
for (int i2=0; i2<_n2; ++i2)
for (int i1=0; i1<_n1; ++i1)
mask[i2][i1] = (_mask2[i2][i1])?1.0f:0.0f;
}
/**
* Returns a 3D array of floats representing this mask.
* The returned array has values 0.0f (false) and 1.0f (true).
* @return mask array of floats.
*/
public float[][][] getAsFloats3() {
Check.state(_mask3!=null,"mask constructed for a 3D image");
float[][][] mask = new float[_n3][_n2][_n1];
getAsFloats(mask);
return mask;
}
/**
* Fills a 3D array of floats representing this mask.
* The returned array has values 0.0f (false) and 1.0f (true).
* @param mask array of floats representing this mask.
*/
public void getAsFloats(float[][][] mask) {
Check.state(_mask3!=null,"mask constructed for a 3D image");
for (int i3=0; i3<_n3; ++i3)
for (int i2=0; i2<_n2; ++i2)
for (int i1=0; i1<_n1; ++i1)
mask[i3][i2][i1] = (_mask3[i3][i2][i1])?1.0f:0.0f;
}
/**
* Applies this mask to a specified array of values.
* @param vfalse value to use where mask is false.
* @param v array of values to be masked.
*/
public void apply(float vfalse, float[][] v) {
Check.state(_mask2!=null,"mask constructed for a 2D image");
for (int i2=0; i2<_n2; ++i2) {
for (int i1=0; i1<_n1; ++i1) {
if (!_mask2[i2][i1])
v[i2][i1] = vfalse;
}
}
}
/**
* Applies this mask to a specified array of values.
* @param vfalse value to use where mask is false.
* @param v array of values to be masked.
*/
public void apply(float vfalse, float[][][] v) {
Check.state(_mask3!=null,"mask constructed for a 3D image");
for (int i3=0; i3<_n3; ++i3) {
for (int i2=0; i2<_n2; ++i2) {
for (int i1=0; i1<_n1; ++i1) {
if (!_mask3[i3][i2][i1])
v[i3][i2][i1] = vfalse;
}
}
}
}
/**
* Applies this mask to a specified eigentensor field.
* @param efalse eigentensor {e11,e12,e22} to use for samples
* where the mask is false.
* @param e eigentensors to be masked.
*/
public void apply(float[] efalse, EigenTensors2 e) {
Check.state(_mask2!=null,"mask constructed for a 2D image");
for (int i2=0; i2<_n2; ++i2) {
for (int i1=0; i1<_n1; ++i1) {
if (!_mask2[i2][i1])
e.setTensor(i1,i2,efalse);
}
}
}
/**
* Applies this mask to a specified eigentensor field.
* @param efalse eigentensor {e11,e12,e13,e22,e23,e33} to use
* for samples where the mask is false.
* @param e eigentensors to be masked.
*/
public void apply(float[] efalse, EigenTensors3 e) {
Check.state(_mask3!=null,"mask constructed for a 3D image");
for (int i3=0; i3<_n3; ++i3) {
for (int i2=0; i2<_n2; ++i2) {
for (int i1=0; i1<_n1; ++i1) {
if (!_mask3[i3][i2][i1])
e.setTensor(i1,i2,i3,efalse);
}
}
}
}
private int _n1,_n2,_n3;
private boolean[][] _mask2;
private boolean[][][] _mask3;
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy