All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.mines.jtk.interp.TimeHeap3 Maven / Gradle / Ivy

The newest version!
/****************************************************************************
Copyright 2008, Colorado School of Mines and others.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
****************************************************************************/
package edu.mines.jtk.interp;

import static edu.mines.jtk.util.ArrayMath.*;
import edu.mines.jtk.util.Check;

/**
 * A min- or max-heap of times sampled in a 3D array. 
 * Such a heap is typically used in fast marching methods. It enhances
 * a conventional heap by maintaining a map of heap entries in a 3D array 
 * of indices. Given array indices (i1,i2,i3), this index map enables O(1) 
 * access to heap entries. Such fast access is required as times in the
 * heap are reduced while marching.
 * 

* Depending on the type of heap, min or max, the entry with either the * smallest or largest time is stored at the top (root) of the heap. This * entry can be accessed with complexity O(1) and removed with complexity * O(log N), where N is the number of entries in the heap. Complexity for * inserting new entries or reducing the times for existing entries is * O(log N). * * @author Dave Hale, Colorado School of Mines * @version 2008.07.07 */ class TimeHeap3 { /** * The heap type determines whether the entry at the top has the minimum * or maximum time. That top entry can be accessed with O(1) complexity * and removed in O(log N) complexity, where N is the number times in the * heap. */ public enum Type {MIN,MAX} /** * An entry in the heap has sample indices (i1,i2) and a time t. * The mark is for external use and is not used by the heap. */ public static class Entry { public int i1,i2,i3; public float time; public int mark; } /** * Constructs a heap with specified type and array dimensions. * @param type the type of heap. * @param n1 number of samples in 1st dimension. * @param n2 number of samples in 2nd dimension. * @param n3 number of samples in 3rd dimension. */ public TimeHeap3(Type type, int n1, int n2, int n3) { _type = type; _n1 = n1; _n2 = n2; _n3 = n3; _imap = new int[n3][n2][n1]; } /** * Gets the type of this heap. * @return the type. */ public Type getType() { return _type; } /** * Gets the number of samples in the 1st dimension. * @return the number of samples. */ public int getN1() { return _n1; } /** * Gets the number of samples in the 2nd dimension. * @return the number of samples. */ public int getN2() { return _n2; } /** * Gets the number of samples in the 3rd dimension. * @return the number of samples. */ public int getN3() { return _n3; } /** * Inserts a new entry into this heap with specified time and indices. * The heap must not already contain an entry with those indices. * @param i1 the sample index in 1st dimension. * @param i2 the sample index in 2nd dimension. * @param i3 the sample index in 2nd dimension. * @param time the time. */ public void insert(int i1, int i2, int i3, float time) { insert(i1,i2,i3,time,0); } /** * Inserts a new entry into this heap with specified time and indices. * The heap must not already contain an entry with those indices. * @param i1 the sample index in 1st dimension. * @param i2 the sample index in 2nd dimension. * @param i3 the sample index in 2nd dimension. * @param time the time. * @param mark a mark to associate with the new entry. */ public void insert(int i1, int i2, int i3, float time, int mark) { int i = indexOf(i1,i2,i3); // index of entry with time to reduce Check.argument(i<0,"entry with indices (i1,i2) is not in the heap"); i = _n; // index at which to insert the entry if (_n==_e.length) // if necessary, ... grow(_n+1); // increase the capacity of this heap Entry ei = _e[i]; if (ei==null) // if an unused entry does not already exist, ... ei = new Entry(); // construct a new entry ei.i1 = i1; ei.i2 = i2; ei.i3 = i3; ei.time = time; ei.mark = mark; set(i,ei); siftUp(i); ++_n; } /** * Reduces the time of the entry in this heap with specified indices. * This heap must already contain an entry with those indices, and * the specified time must be less than the time for that entry. * @param i1 the sample index in 1st dimension. * @param i2 the sample index in 2nd dimension. * @param i3 the sample index in 2nd dimension. * @param time the reduced time. */ public void reduce(int i1, int i2, int i3, float time) { int i = indexOf(i1,i2,i3); // index of entry with time to reduce Check.argument(i>=0,"entry with indices (i1,i2) is in the heap"); Check.argument(time<_e[i].time,"specified time less than time in heap"); _e[i].time = time; // reduce the time if (_type==Type.MIN) { // for a min-heap, ... siftUp(i); // the entry may need to move up } else { // but for a max heap, ... siftDown(i); // the entry may need to move down } } /** * Removes and returns the heap entry with smallest/largest time. * The heap must not be empty. */ public Entry remove() { Check.state(_n>0,"heap is not empty"); Entry e0 = _e[0]; --_n; if (_n>0) { set(0,_e[_n]); set(_n,e0); siftDown(0); } return e0; } /** * Determines whether this help contains an entry with the specified indices. * @param i1 the sample index in 1st dimension. * @param i2 the sample index in 2nd dimension. * @param i3 the sample index in 3rd dimension. * @return true, if in the heap; false, otherwise. */ public boolean contains(int i1, int i2, int i3) { return indexOf(i1,i2,i3)>=0; } /** * Removes all entries from this heap. */ public void clear() { _n = 0; } /** * Returns the number of entries in this heap. */ public int size() { return _n; } /** * Returns true if this heap is empty; false, otherwise. */ public boolean isEmpty() { return _n==0; } /** * Dumps this heap to standard output; leading spaces show level in tree. */ public void dump() { dump("",0); } /////////////////////////////////////////////////////////////////////////// // private private Type _type; // heap type, either MIN or MAX private int _n1,_n2,_n3; // array dimensions private int _n; // number of entries in this heap private int[][][] _imap; // maps array indices (i1,i2,i3) to heap index i private Entry[] _e = new Entry[1024]; // array of entries in this heap /** * Returns the heap index of the entry with array indices (i1,i2). * If such an entry is not in the heap, this method returns -1, but * throws an exception if the indices i1 or i2 are out of bounds. */ private int indexOf(int i1, int i2, int i3) { int i = _imap[i3][i2][i1]; if (i<0 || i>=_n) return -1; Entry ei = _e[i]; if (ei.i1!=i1 || ei.i2!=i2 || ei.i3!=i3) return -1; return i; } /** * Sets the i'th entry, and updates the index map accordingly. */ private void set(int i, Entry ei) { _e[i] = ei; _imap[ei.i3][ei.i2][ei.i1] = i; } /** * If necessary, moves entry e[i] down so not greater/less than children. */ private void siftDown(int i) { Entry ei = _e[i]; // entry ei that may move down float eit = ei.time; // cached time for entry ei int m = _n>>>1; // number of entries with at least one child while (iec.time) // if right child largest, ... ec = _e[c=r]; // the larger of left and right children if (eit>=ec.time) // break if ei not less than larger child break; } set(i,ec); // move smaller/larger child up i = c; } if (ei!=_e[i]) // if necessary, ... set(i,ei); // set ei where it belongs } /** * If necessary, moves entry e[i] up so not less/greater than parent. */ private void siftUp(int i) { Entry ei = _e[i]; // entry ei that may move up float eit = ei.time; // cached time for entry ei while (i>0) { // while a parent (not the root entry), ... int p = (i-1)>>>1; // index of parent Entry ep = _e[p]; // the parent if (_type==Type.MIN) { // if min-heap if (eit>=ep.time) // break if ei not less than parent break; } else { if (eit<=ep.time) // break if ei not greater than parent break; } set(i,ep); // ei less/greater than parent, so move parent down i = p; } if (ei!=_e[i]) // if necessary, ... set(i,ei); // set ei where it belongs } /** * Grows this heap to have at least the specified capacity. */ private void grow(int minCapacity) { if (minCapacity<0) // overflow throw new OutOfMemoryError(); int oldCapacity = _e.length; int newCapacity = oldCapacity*2; if (newCapacity<0) // overflow newCapacity = Integer.MAX_VALUE; if (newCapacity





© 2015 - 2025 Weber Informatics LLC | Privacy Policy