All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.mines.jtk.opt.ArrayVect1 Maven / Gradle / Ivy

/****************************************************************************
Copyright 2003, Landmark Graphics and others.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
 ****************************************************************************/
package edu.mines.jtk.opt;

import edu.mines.jtk.util.Almost;

import java.util.logging.Logger;

/**
 * Implements a Vect by wrapping an array of doubles.
 * The embedded data are exposed by a getData method.  For all practical
 * purposes this member is public, except that this class must always
 * point to the same array.  The implementation as an array
 * is the point of this class, to avoid duplicate implementations
 * elsewhere.  Multiple inheritance is prohibited and
 * prevents the mixin pattern, but you can share the wrapped array
 * as a private member of your own class,
 * and easily delegate all implemented methods.
 *
 * @author W.S. Harlan
 */
public class ArrayVect1 implements Vect {
    /**
     * wrapped data
     */
    private double[] _data = null;
    /**
     * variance
     */
    private double _variance = 1.0;
    private static final Logger LOG = Logger.getLogger("edu.mines.jtk.opt");
    private static final long serialVersionUID = 1L;

    /**
     * Construct from an array of data.
     *
     * @param data     This is the data that will be manipulated.
     * @param variance The method multiplyInverseCovariance()
     *                 will divide all samples by this number.  Pass a value
     *                 of 1 if you do not care.
     */
    public ArrayVect1(final double[] data, final double variance) {
        init(data, variance);
    }

    /**
     * To be used with init()
     */
    protected ArrayVect1() {
    }

    /**
     * Construct from an array of data.
     *
     * @param data     This is the data that will be manipulated.
     * @param variance The method multiplyInverseCovariance()
     *                 will divide all samples by this number.  Pass a value
     *                 of 1 if you do not care.
     */
    protected final void init(final double[] data, final double variance) {
        _data = data;
        _variance = variance;
    }

    /**
     * Return the size of the embedded array
     *
     * @return size of the embedded array
     */
    public int getSize() {
        return _data.length;
    }

    /**
     * Get the embedded data
     *
     * @return Same array as passed to constructore.
     */
    public double[] getData() {
        return _data;
    }

    // Cloneable
    @Override
    public ArrayVect1 clone() {
        try {
            final ArrayVect1 result = (ArrayVect1) super.clone();
            result._data = result._data.clone();
            return result;
        } catch (CloneNotSupportedException ex) {
            final IllegalStateException e = new IllegalStateException(ex.getMessage());
            e.initCause(ex);
            throw e;
        }
    }

    // VectConst
    @Override
    public double dot(final VectConst other) {
        double result = 0;
        final ArrayVect1 rhs = (ArrayVect1) other;
        for (int i = 0; i < _data.length; ++i) {
            result += _data[i] * rhs._data[i];
        }
        return result;
    }

    // Object
    @Override
    public String toString() {
        final StringBuilder sb = new StringBuilder();
        sb.append("(");
        for (int i = 0; i < _data.length; ++i) {
            sb.append(String.valueOf(_data[i]));
            if (i < _data.length - 1) {
                sb.append(", ");
            }
        }
        sb.append(")");
        return sb.toString();
    }

    // Vect
    @Override
    public void dispose() {
        _data = null;
    }

    // Vect
    @Override
    public void multiplyInverseCovariance() {
        final double scale = Almost.FLOAT.divide(1.0, getSize() * _variance, 0.0);
        VectUtil.scale(this, scale);
    }

    // Vect
    @Override
    public void constrain() {
    }

    // Vect
    @Override
    public void postCondition() {
    }

    // Vect
    @Override
    public void add(final double scaleThis, final double scaleOther, final VectConst other) {
        final ArrayVect1 rhs = (ArrayVect1) other;
        for (int i = 0; i < _data.length; ++i) {
            _data[i] = scaleThis * _data[i] + scaleOther * rhs._data[i];
        }
    }

    // Vect
    @Override
    public void project(final double scaleThis, final double scaleOther, final VectConst other) {
        add(scaleThis, scaleOther, other);
    }

    // VectConst
    @Override
    public double magnitude() {
        return Almost.FLOAT.divide(dot(this), getSize() * _variance, 0.0);
    }
}





© 2015 - 2025 Weber Informatics LLC | Privacy Policy