edu.mines.jtk.opt.LineSearch Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of edu-mines-jtk Show documentation
Show all versions of edu-mines-jtk Show documentation
Java packages for science and engineering
The newest version!
/****************************************************************************
Copyright 2006, Colorado School of Mines and others.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
****************************************************************************/
package edu.mines.jtk.opt;
import edu.mines.jtk.util.Check;
import static edu.mines.jtk.util.MathPlus.*;
/**
* Searches along a line for a minimum of a continuously differentiable
* function of one or more variables. Uses values f(s) of the function and
* its directional derivative f'(s) (the dot product of a search-direction
* vector and the function's gradient) to find a step s that minimizes the
* function along the line constraining the search. The search assumes that
* f'(0) < 0, and searches for a positive s that minimizes f(s).
*
* This implementation uses Mor'e and Thuente's algorithm with guaranteed
* sufficient decrease. It iteratively searches for a step s that at each
* iteration satisfies both a sufficient-decrease condition and a curvature
* condition.
*
* The sufficient decrease condition (1) is
*
* f(s) <= f(0) + ftol*f'(0)*s,
*
* and the curvature condition (2) is
*
* abs(f'(s)) <= gtol*abs(f'(0)),
*
* for specified non-negative tolerances ftol and gtol.
*
* Condition (1) ensures a sufficient decrease in the function f(s),
* provided that s is not too small. Condition (2) ensures that s is not
* too small, and usually guarantees that s is near a local minimizer of
* f. It is called a curvature condition because it implies that
*
* f'(s) - f'(0) > (1-gtol)*abs(f'(0)),
*
* so that the average curvature of f on the interval (0,s) is positive.
*
* The curvature condition (2) is especially important in a quasi-Newton
* method for function minimization, because it guarantees that a
* positive-definite quasi-Newton update is possible. If ftol is less than
* gtol and the function f(s) is bounded below, then there exists a step s
* that satisfies both conditions. If such a step cannot be found, then
* only the first sufficient-decrease condition (1) is satisfied.
*
* Mor'e and Thuente's algorithm initially choses an interval [sa,sb] that
* contains a minimizer of a modified function
*
* h(s) = f(s) - f(0) - ftol*f'(0)*s
*
* If h(s) <= 0 and f'(s) >= 0 for some step s, then the interval
* [a,b] is chosen so that it contains a minimizer of f.
*
* If no step can be found that satisfies both conditions, then the
* algorithm ends unconverged. In this case the step s satisifies only
* the sufficient-decrease condition.
*
* References:
* -
* Mor'e, J.J., and Thuente, D.J., 1992, Line search algorithms with
* guaranteed sufficient decrease: Preprint MCS-P330-1092, Argonne
* National Laboratory.
*
-
* Averick, B.M., and Mor'e, J.J., 1993, FORTRAN subroutines dcstep
* and dcsrch from MINPACK-2, 1993, Argonne National Laboratory and
* University of Minnesota.
*
*
* @author Dave Hale, Colorado School of Mines
* @version 2006.09.02
*/
public class LineSearch {
/**
* The function to be minimized.
*/
public interface Function {
/**
* Evaluates the function and its derivative for the especified step.
*
* @param s the step.
* @return array {f(s),f'(s)}
*/
double[] evaluate(double s);
}
/**
* Line search converged. Conditions (1) and (2) are satisifed.
*/
public static final int CONVERGED = 1;
/**
* Line search ended because the step equals a specified minimum.
*/
public static final int SMIN = 2;
/**
* Line search ended because the step equals a specified maximum.
*/
public static final int SMAX = 3;
/**
* Line search ended because the step has been resolved to within
* a specified tolerance.
*/
public static final int STOL = 4;
/**
* Line search failed due to rounding error.
*/
public static final int FAILED = 5;
/**
* The result of a line search.
*/
public static class Result {
/**
* The step s.
*/
public final double s;
/**
* The value of the function f(s).
*/
public final double f;
/**
* The value of the derivative f'(s).
*/
public final double g;
/**
* The condition that ended the search.
*/
public final int ended;
/**
* The number of function and derivative evaluations.
*/
public final int neval;
/**
* Determines whether the line search converged.
*
* @return true, if converged; false, otherwise.
*/
public boolean converged() {
return ended == CONVERGED;
}
private Result(final double s, final double f, final double g, final int ended, final int neval) {
this.s = s;
this.f = f;
this.g = g;
this.ended = ended;
this.neval = neval;
}
}
/**
* Constructs a line search with specified tolerances.
*
* @param func Function to search.
* @param stol non-negative relative tolerance for an acceptable step.
* The search ends if the search interval [slo,shi] is smaller than
* this tolerance times the upper bound shi.
* @param ftol non-negative tolerance for sufficient-decrease condition (1).
* @param gtol non-negative tolerance for curvature condition (2).
*/
public LineSearch(final Function func, final double stol, final double ftol, final double gtol) {
Check.argument(stol >= 0.0, "stol>=0.0");
Check.argument(ftol >= 0.0, "ftol>=0.0");
Check.argument(gtol >= 0.0, "gtol>=0.0");
_func = func;
_stol = stol;
_ftol = ftol;
_gtol = gtol;
}
private static final double SLO_FACTOR = 1.1;
private static final double SHI_FACTOR = 4.0;
/**
* Searches for a minimizing step.
*
* @param s current estimate of a satisfactory step. Must be positive.
* @param f value f(0) of the function f at s = 0.
* @param g value f'(0) of the derivative of f at s = 0.
* @param smin Minimum value of s to be searched.
* @param smax Maximum value of s to be searched.
* @return the result of the line search.
*/
public Result search(
double s, double f, double g, final double smin, final double smax) {
Check.argument(smin >= 0.0, "smin>=0.0");
Check.argument(smin <= smax, "smin<=smax");
Check.argument(smin <= s, "smin<=s");
Check.argument(s <= smax, "s<=smax");
Check.argument(g < 0.0, "g<0.0");
final StepInterval si = new StepInterval();
final double finit = f;
final double ginit = g;
final double gtest = _ftol * ginit;
double width = smax - smin;
double widthOld = 2.0 * width;
double fa = finit;
double ga = ginit;
double fb = finit;
double gb = ginit;
double shi = s * (1.0 + SHI_FACTOR);
double[] fg = _func.evaluate(s);
f = fg[0];
g = fg[1];
int neval = 1;
int ended = 0;
double slo = 0.0;
double sb = 0.0;
double sa = 0.0;
boolean bracketed = false;
boolean stage1 = true;
while (ended == 0) {
// If h(s) <= 0 and f'(s) >= 0 for some step, then begin stage 2.
final double ftest = finit + s * gtest;
if (stage1 && f <= ftest && g >= 0.0) {
stage1 = false;
}
// If done searching (for whatever reason), ...
if (bracketed && (s <= slo || s >= shi)) {
ended = FAILED;
} else if (bracketed && shi - slo <= _stol * shi) {
ended = STOL;
} else if (s == smax && f <= ftest && g <= gtest) {
ended = SMAX;
} else if (s == smin && (f > ftest || g >= gtest)) {
ended = SMIN;
} else if (f <= ftest && abs(g) <= _gtol * (-ginit)) {
ended = CONVERGED;
}
// Else, if still searching, ...
else {
// During the first stage, use a modified function to compute
// the step if a lower function value has been obtained, but
// the decrease is insufficient.
if (stage1 && f <= fa && f > ftest) {
// Modify function and derivative values.
final double fm = f - s * gtest;
double fam = fa - sa * gtest;
double fbm = fb - sb * gtest;
final double gm = g - gtest;
double gam = ga - gtest;
double gbm = gb - gtest;
// Update sa, sb, and compute the new step s.
si.sa = sa;
si.fa = fam;
si.ga = gam;
si.sb = sb;
si.fb = fbm;
si.gb = gbm;
si.bracketed = bracketed;
s = updateStep(s, fm, gm, slo, shi, si);
sa = si.sa;
fam = si.fa;
gam = si.ga;
sb = si.sb;
fbm = si.fb;
gbm = si.gb;
bracketed = si.bracketed;
// Unmodify function and derivative values.
fa = fam + sa * gtest;
fb = fbm + sb * gtest;
ga = gam + gtest;
gb = gbm + gtest;
}
// Otherwise, use the unmodified function f.
else {
// Update sa, sb, and compute the new step s.
si.sa = sa;
si.fa = fa;
si.ga = ga;
si.sb = sb;
si.fb = fb;
si.gb = gb;
si.bracketed = bracketed;
s = updateStep(s, f, g, slo, shi, si);
sa = si.sa;
fa = si.fa;
ga = si.ga;
sb = si.sb;
fb = si.fb;
gb = si.gb;
bracketed = si.bracketed;
}
// Decide if a bisection step is needed.
if (bracketed) {
if (abs(sb - sa) >= 0.66 * widthOld) {
s = sa + 0.5 * (sb - sa);
}
widthOld = width;
width = abs(sb - sa);
}
// Set the minimum and maximum steps allowed for s.
if (bracketed) {
slo = min(sa, sb);
shi = max(sa, sb);
} else {
slo = s + SLO_FACTOR * (s - sa);
shi = s + SHI_FACTOR * (s - sa);
}
// Force the step to be within specified bounds.
s = max(s, smin);
s = min(s, smax);
// If further progress is impossible, step s is best found so far.
if ((bracketed && (s <= slo || s >= shi)) ||
(bracketed && shi - slo <= _stol * shi)) {
s = sa;
}
}
// Evaluate function f(s) and derivative f'(s).
fg = _func.evaluate(s);
f = fg[0];
g = fg[1];
++neval;
}
return new Result(s, f, g, ended, neval);
}
///////////////////////////////////////////////////////////////////////////
// private
private final Function _func;
private final double _stol;
private final double _ftol;
private final double _gtol;
private static class StepInterval {
double sa = 0.0;
double fa = 0.0;
double ga = 0.0;
double sb = 0.0;
double fb = 0.0;
double gb = 0.0;
boolean bracketed = false;
}
// Updates a specified step interval, and returns an updated step.
private double updateStep(
final double sp, final double fp, final double gp,
final double smin, final double smax, final StepInterval si) {
final double sa = si.sa;
final double fa = si.fa;
final double ga = si.ga;
final double sb = si.sb;
final double fb = si.fb;
final double gb = si.gb;
boolean bracketed = si.bracketed;
final double sgng = gp * (ga / abs(ga));
double spf = sp;
// First case: A higher function value. The minimum is bracketed.
// If the cubic step is closer to sa than the quadratic step, the
// cubic step is taken, otherwise the average of the cubic and
// quadratic steps is taken.
if (fp > fa) {
final double theta = 3.0 * (fa - fp) / (sp - sa) + ga + gp;
final double s = max(abs(theta), abs(ga), abs(gp));
double gamma = s * sqrt((theta / s) * (theta / s) - (ga / s) * (gp / s));
if (sp < sa) {
gamma = -gamma;
}
final double p = (gamma - ga) + theta;
final double q = ((gamma - ga) + gamma) + gp;
final double r = p / q;
final double spc = sa + r * (sp - sa);
final double spq = sa + ((ga / ((fa - fp) / (sp - sa) + ga)) / 2.0) * (sp - sa);
if (abs(spc - sa) < abs(spq - sa)) {
spf = spc;
} else {
spf = spc + (spq - spc) / 2.0;
}
bracketed = true;
}
// Second case: A lower function value and derivatives of opposite
// sign. The minimum is bracketed. If the cubic step is farther from
// sp than the secant step, the cubic step is taken, otherwise the
// secant step is taken.
else if (sgng < 0.0) {
final double theta = 3.0 * (fa - fp) / (sp - sa) + ga + gp;
final double s = max(abs(theta), abs(ga), abs(gp));
double gamma = s * sqrt((theta / s) * (theta / s) - (ga / s) * (gp / s));
if (sp > sa) {
gamma = -gamma;
}
final double p = (gamma - gp) + theta;
final double q = ((gamma - gp) + gamma) + ga;
final double r = p / q;
final double spc = sp + r * (sa - sp);
final double spq = sp + (gp / (gp - ga)) * (sa - sp);
if (abs(spc - sp) > abs(spq - sp)) {
spf = spc;
} else {
spf = spq;
}
bracketed = true;
}
// Third case: A lower function value, derivatives of the same sign,
// and the magnitude of the derivative decreases.
else if (abs(gp) < abs(ga)) {
// The cubic step is computed only if the cubic tends to infinity
// in the direction of the step or if the minimum of the cubic
// is beyond sp. Otherwise the cubic step is defined to be the
// secant step.
final double theta = 3.0 * (fa - fp) / (sp - sa) + ga + gp;
final double s = max(abs(theta), abs(ga), abs(gp));
// The case gamma = 0 arises only if the cubic does not tend
// to infinity in the direction of the step.
double gamma = s * sqrt(max(0.0, (theta / s) * (theta / s) - (ga / s) * (gp / s)));
if (sp > sa) {
gamma = -gamma;
}
final double p = (gamma - gp) + theta;
final double q = (gamma + (ga - gp)) + gamma;
final double r = p / q;
final double spc;
if (r < 0.0 && gamma != 0.0) {
spc = sp + r * (sa - sp);
} else if (sp > sa) {
spc = smax;
} else {
spc = smin;
}
final double spq = sp + (gp / (gp - ga)) * (sa - sp);
// If a minimizer has been bracketed, ...
if (bracketed) {
// If the cubic step is closer to sp than the secant step, the
// cubic step is taken, otherwise the secant step is taken.
if (abs(spc - sp) < abs(spq - sp)) {
spf = spc;
} else {
spf = spq;
}
if (sp > sa) {
spf = min(sp + 0.66 * (sb - sp), spf);
} else {
spf = max(sp + 0.66 * (sb - sp), spf);
}
}
// Else, if a minimizer has not been bracketed, ...
else {
// If the cubic step is farther from sp than the secant step,
// the cubic step is taken, otherwise the secant step is taken.
if (abs(spc - sp) > abs(spq - sp)) {
spf = spc;
} else {
spf = spq;
}
spf = min(smax, spf);
spf = max(smin, spf);
}
}
// Fourth case: A lower function value, derivatives of the same sign,
// and the magnitude of the derivative does not decrease. If the
// minimum is not bracketed, the step is either smin or smax,
// otherwise the cubic step is taken.
else {
if (bracketed) {
final double theta = 3.0 * (fp - fb) / (sb - sp) + gb + gp;
final double s = max(abs(theta), abs(gb), abs(gp));
double gamma = s * sqrt((theta / s) * (theta / s) - (gb / s) * (gp / s));
if (sp > sb) {
gamma = -gamma;
}
final double p = (gamma - gp) + theta;
final double q = ((gamma - gp) + gamma) + gb;
final double r = p / q;
final double spc = sp + r * (sb - sp);
spf = spc;
} else if (sp > sa) {
spf = smax;
} else {
spf = smin;
}
}
// Update the step interval.
if (fp > fa) {
si.sb = sp;
si.fb = fp;
si.gb = gp;
} else {
if (sgng < 0.0) {
si.sb = sa;
si.fb = fa;
si.gb = ga;
}
si.sa = sp;
si.fa = fp;
si.ga = gp;
}
si.bracketed = bracketed;
// Return new step.
return spf;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy