edu.mines.jtk.sgl.Matrix44 Maven / Gradle / Ivy
Show all versions of edu-mines-jtk Show documentation
/****************************************************************************
Copyright 2004, Colorado School of Mines and others.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
****************************************************************************/
package edu.mines.jtk.sgl;
import edu.mines.jtk.util.Check;
/**
* A 4-by-4 matrix.
* @author Dave Hale, Colorado School of Mines
* @version 2005.05.20
*/
public class Matrix44 {
/**
* The matrix elements stored contiguously in an array, as in OpenGL.
* The matrix elements are:
*
* | m00 m01 m02 m03 | | m[ 0] m[ 4] m[ 8] m[12] |
* | m10 m11 m12 m13 | = | m[ 1] m[ 5] m[ 9] m[13] |
* | m20 m21 m22 m23 | | m[ 2] m[ 6] m[10] m[14] |
* | m30 m31 m32 m03 | | m[ 3] m[ 7] m[11] m[15] |
*
*/
public double[] m = new double[16];
/**
* Constructs an identity matrix.
*/
public Matrix44() {
m[0] = m[5] = m[10] = m[15] = 1.0;
}
/**
* Constructs a matrix with specified elements.
* @param m00 the element with (row,col) indices (0,0)
* @param m01 the element with (row,col) indices (0,1)
* @param m02 the element with (row,col) indices (0,2)
* @param m03 the element with (row,col) indices (0,3)
* @param m10 the element with (row,col) indices (1,0)
* @param m11 the element with (row,col) indices (1,1)
* @param m12 the element with (row,col) indices (1,2)
* @param m13 the element with (row,col) indices (1,3)
* @param m20 the element with (row,col) indices (2,0)
* @param m21 the element with (row,col) indices (2,1)
* @param m22 the element with (row,col) indices (2,2)
* @param m23 the element with (row,col) indices (2,3)
* @param m30 the element with (row,col) indices (3,0)
* @param m31 the element with (row,col) indices (3,1)
* @param m32 the element with (row,col) indices (3,2)
* @param m33 the element with (row,col) indices (3,3)
*/
public Matrix44(double m00, double m01, double m02, double m03,
double m10, double m11, double m12, double m13,
double m20, double m21, double m22, double m23,
double m30, double m31, double m32, double m33)
{
set(m00,m01,m02,m03,
m10,m11,m12,m13,
m20,m21,m22,m23,
m30,m31,m32,m33);
}
/**
* Constructs a matrix with specified elements. The specified array of
* elements is referenced by (not copied into) the constructed matrix.
* Therefore, any changes to the matrix will be reflected in changes to
* the elements of the specified array.
* @param m the array[16] of matrix elements.
*/
public Matrix44(double[] m) {
this.m = m;
}
/**
* Constructs a copy of the specified matrix.
* @param m the matrix.
*/
public Matrix44(Matrix44 m) {
set(m.m[ 0],m.m[ 4],m.m[ 8],m.m[12],
m.m[ 1],m.m[ 5],m.m[ 9],m.m[13],
m.m[ 2],m.m[ 6],m.m[10],m.m[14],
m.m[ 3],m.m[ 7],m.m[11],m.m[15]);
}
/**
* Sets all elements of this matrix.
* @param m00 the element with (row,col) indices (0,0)
* @param m01 the element with (row,col) indices (0,1)
* @param m02 the element with (row,col) indices (0,2)
* @param m03 the element with (row,col) indices (0,3)
* @param m10 the element with (row,col) indices (1,0)
* @param m11 the element with (row,col) indices (1,1)
* @param m12 the element with (row,col) indices (1,2)
* @param m13 the element with (row,col) indices (1,3)
* @param m20 the element with (row,col) indices (2,0)
* @param m21 the element with (row,col) indices (2,1)
* @param m22 the element with (row,col) indices (2,2)
* @param m23 the element with (row,col) indices (2,3)
* @param m30 the element with (row,col) indices (3,0)
* @param m31 the element with (row,col) indices (3,1)
* @param m32 the element with (row,col) indices (3,2)
* @param m33 the element with (row,col) indices (3,3)
*/
public void set(double m00, double m01, double m02, double m03,
double m10, double m11, double m12, double m13,
double m20, double m21, double m22, double m23,
double m30, double m31, double m32, double m33)
{
m[ 0] = m00; m[ 4] = m01; m[ 8] = m02; m[12] = m03;
m[ 1] = m10; m[ 5] = m11; m[ 9] = m12; m[13] = m13;
m[ 2] = m20; m[ 6] = m21; m[10] = m22; m[14] = m23;
m[ 3] = m30; m[ 7] = m31; m[11] = m32; m[15] = m33;
}
/**
* Returns the inverse Minv of this matrix M.
* @return the inverse Minv.
*/
public Matrix44 inverse() {
return new Matrix44(invert(m,new double[16]));
}
/**
* Replaces this matrix M with its inverse Minv.
* @return this matrix, inverted.
*/
public Matrix44 inverseEquals() {
invert(m,m);
return this;
}
/**
* Returns the transpose M' of this matrix M.
* @return the transpose M'.
*/
public Matrix44 transpose() {
double[] t = {
m[ 0],m[ 4],m[ 8],m[12],
m[ 1],m[ 5],m[ 9],m[13],
m[ 2],m[ 6],m[10],m[14],
m[ 3],m[ 7],m[11],m[15]
};
return new Matrix44(t);
}
/**
* Replaces this matrix M with its transpose M'.
* @return this matrix, transposed.
*/
public Matrix44 transposeEquals() {
double t00=m[ 0], t01=m[ 1], t02=m[ 2], t03=m[ 3],
t10=m[ 4], t11=m[ 5], t12=m[ 6], t13=m[ 7],
t20=m[ 8], t21=m[ 9], t22=m[10], t23=m[11],
t30=m[12], t31=m[13], t32=m[14], t33=m[15];
m[ 0] = t00; m[ 4] = t01; m[ 8] = t02; m[12] = t03;
m[ 1] = t10; m[ 5] = t11; m[ 9] = t12; m[13] = t13;
m[ 2] = t20; m[ 6] = t21; m[10] = t22; m[14] = t23;
m[ 3] = t30; m[ 7] = t31; m[11] = t32; m[15] = t33;
return this;
}
/**
* Returns the product MA of this matrix M and a matrix A.
* @param a the matrix A.
* @return the product MA.
*/
public Matrix44 times(Matrix44 a) {
return new Matrix44(mul(m,a.m,new double[16]));
}
/**
* Replaces this matrix M with the matrix product MA.
* @param a the matrix A.
* @return the product MA.
*/
public Matrix44 timesEquals(Matrix44 a) {
mul(m,a.m,m);
return this;
}
/**
* Returns the product MA' of this matrix M and the transpose of a matrix A.
* @param a the matrix A.
* @return the product MA'.
*/
public Matrix44 timesTranspose(Matrix44 a) {
return new Matrix44(mult(m,a.m,new double[16]));
}
/**
* Replaces this matrix M with the matrix product MA'.
* @param a the matrix A.
* @return the product MA'.
*/
public Matrix44 timesTransposeEquals(Matrix44 a) {
mult(m,a.m,m);
return this;
}
/**
* Returns the product M'A of the transpose of this matrix M and a matrix A.
* @param a the matrix A.
* @return the product M'A.
*/
public Matrix44 transposeTimes(Matrix44 a) {
return new Matrix44(tmul(m,a.m,new double[16]));
}
/**
* Replaces this matrix M with the matrix product M'A.
* @param a the matrix A.
* @return the product M'A.
*/
public Matrix44 transposeTimesEquals(Matrix44 a) {
tmul(m,a.m,m);
return this;
}
/**
* Returns the product Mp of this matrix M and a point p.
* The coordinate w of the specified point is assumed to equal 1.0;
* and the returned point is homogenized, that is, scaled such that
* its coordinate w equals 1.0.
* @param p the point p.
* @return the product Mp.
*/
public Point3 times(Point3 p) {
double px = p.x;
double py = p.y;
double pz = p.z;
double qx = m[ 0]*px + m[ 4]*py + m[ 8]*pz + m[12];
double qy = m[ 1]*px + m[ 5]*py + m[ 9]*pz + m[13];
double qz = m[ 2]*px + m[ 6]*py + m[10]*pz + m[14];
double qw = m[ 3]*px + m[ 7]*py + m[11]*pz + m[15];
if (qw!=1.0) {
double s = 1.0/qw;
qx *= s;
qy *= s;
qz *= s;
}
return new Point3(qx,qy,qz);
}
/**
* Returns the product Mp of this matrix M and a point p.
* @param p the point p.
* @return the product Mp.
*/
public Point4 times(Point4 p) {
double px = p.x;
double py = p.y;
double pz = p.z;
double pw = p.w;
double qx = m[ 0]*px + m[ 4]*py + m[ 8]*pz + m[12]*pw;
double qy = m[ 1]*px + m[ 5]*py + m[ 9]*pz + m[13]*pw;
double qz = m[ 2]*px + m[ 6]*py + m[10]*pz + m[14]*pw;
double qw = m[ 3]*px + m[ 7]*py + m[11]*pz + m[15]*pw;
return new Point4(qx,qy,qz,qw);
}
/**
* Returns the product M'p of the transpose of this matrix M and a point p.
* The coordinate w of the specified point is assumed to equal 1.0; and
* the returned point is homogenized, that is, scaled such that its
* coordinate w equals 1.0.
* @param p the point p.
* @return the product M'p.
*/
public Point3 transposeTimes(Point3 p) {
double px = p.x;
double py = p.y;
double pz = p.z;
double qx = m[ 0]*px + m[ 1]*py + m[ 2]*pz + m[ 3];
double qy = m[ 4]*px + m[ 5]*py + m[ 6]*pz + m[ 7];
double qz = m[ 8]*px + m[ 9]*py + m[10]*pz + m[11];
double qw = m[12]*px + m[13]*py + m[14]*pz + m[15];
if (qw!=1.0) {
double s = 1.0/qw;
qx *= s;
qy *= s;
qz *= s;
}
return new Point3(qx,qy,qz);
}
/**
* Returns the product M'p of the transpose of this matrix M and a point p.
* @param p the point p.
* @return the product M'p.
*/
public Point4 transposeTimes(Point4 p) {
double px = p.x;
double py = p.y;
double pz = p.z;
double pw = p.w;
double qx = m[ 0]*px + m[ 1]*py + m[ 2]*pz + m[ 3]*pw;
double qy = m[ 4]*px + m[ 5]*py + m[ 6]*pz + m[ 7]*pw;
double qz = m[ 8]*px + m[ 9]*py + m[10]*pz + m[11]*pw;
double qw = m[12]*px + m[13]*py + m[14]*pz + m[15]*pw;
return new Point4(qx,qy,qz,qw);
}
/**
* Returns the product Mv of this matrix M and a vector v.
* Uses only the upper-left 3-by-3 elements of this matrix.
* @param v the vector v.
* @return the product Mv.
*/
public Vector3 times(Vector3 v) {
double vx = v.x;
double vy = v.y;
double vz = v.z;
double ux = m[ 0]*vx + m[ 4]*vy + m[ 8]*vz;
double uy = m[ 1]*vx + m[ 5]*vy + m[ 9]*vz;
double uz = m[ 2]*vx + m[ 6]*vy + m[10]*vz;
return new Vector3(ux,uy,uz);
}
/**
* Returns the product M'v of the transpose of this matrix M and a vector v.
* Uses only the upper-left 3-by-3 elements of this matrix.
* @param v the vector v.
* @return the product M'v.
*/
public Vector3 transposeTimes(Vector3 v) {
double vx = v.x;
double vy = v.y;
double vz = v.z;
double ux = m[ 0]*vx + m[ 1]*vy + m[ 2]*vz;
double uy = m[ 4]*vx + m[ 5]*vy + m[ 6]*vz;
double uz = m[ 8]*vx + m[ 9]*vy + m[10]*vz;
return new Vector3(ux,uy,uz);
}
/**
* Returns a new identity matrix.
* @return an identity matrix.
*/
public static Matrix44 identity() {
return new Matrix44();
}
/**
* Returns a new translation matrix.
* @param tx the x component of the translation.
* @param ty the y component of the translation.
* @param tz the z component of the translation.
* @return the translation matrix.
*/
public static Matrix44 translate(double tx, double ty, double tz) {
return (new Matrix44()).setTranslate(tx,ty,tz);
}
/**
* Returns a new translation matrix.
* @param tv the translation vector.
* @return the translation matrix.
*/
public static Matrix44 translate(Vector3 tv) {
return (new Matrix44()).setTranslate(tv);
}
/**
* Returns a new scaling matrix.
* @param sx the x component of the scaling.
* @param sy the y component of the scaling.
* @param sz the z component of the scaling.
* @return the scaling matrix.
*/
public static Matrix44 scale(double sx, double sy, double sz) {
return (new Matrix44()).setScale(sx,sy,sz);
}
/**
* Returns a new rotation matrix.
* The rotation is about a specified vector axis.
* @param ra the angle of rotation, in degrees.
* @param rx the x component of the vector axis of rotation
* @param ry the y component of the vector axis of rotation
* @param rz the z component of the vector axis of rotation
* @return the rotation matrix.
*/
public static Matrix44 rotate(double ra, double rx, double ry, double rz) {
return (new Matrix44()).setRotate(ra,rx,ry,rz);
}
/**
* Returns a new rotation matrix.
* The rotation is about a specified vector axis.
* @param ra the angle of rotation, in degrees.
* @param rv the vector axis of rotation.
* @return the rotation matrix.
*/
public static Matrix44 rotate(double ra, Vector3 rv) {
return (new Matrix44()).setRotate(ra,rv);
}
/**
* Returns a new rotation matrix.
* The rotation is about the x axis.
* @param ra the angle of rotation, in degrees.
* @return the rotation matrix.
*/
public static Matrix44 rotateX(double ra) {
return (new Matrix44()).setRotateX(ra);
}
/**
* Returns a new rotation matrix.
* The rotation is about the y axis.
* @param ra the angle of rotation, in degrees.
* @return the rotation matrix.
*/
public static Matrix44 rotateY(double ra) {
return (new Matrix44()).setRotateY(ra);
}
/**
* Returns a new rotation matrix.
* The rotation is about the z axis.
* @param ra the angle of rotation, in degrees.
* @return the rotation matrix.
*/
public static Matrix44 rotateZ(double ra) {
return (new Matrix44()).setRotateZ(ra);
}
/**
* Returns a new orthographic-projection matrix. Parameters
* correspond to those for the OpenGL standard function glOrtho.
* @param left the coordinate for the left clipping plane.
* @param right the coordinate for the right clipping plane.
* @param bottom the coordinate for the bottom clipping plane.
* @param top the coordinate for the top clipping plane.
* @param znear the distance to the near depth clipping plane
* @param zfar the distance to the far depth clipping plane
* @return the orthographic-projection matrix.
*/
public static Matrix44 ortho(
double left, double right,
double bottom, double top,
double znear, double zfar)
{
return (new Matrix44()).setOrtho(left,right,bottom,top,znear,zfar);
}
/**
* Returns a new perspective-projection matrix. Parameters
* correspond to those for the OpenGL standard function glFrustum.
* @param left the coordinate for the left clipping plane.
* @param right the coordinate for the right clipping plane.
* @param bottom the coordinate for the bottom clipping plane.
* @param top the coordinate for the top clipping plane.
* @param znear the distance to the near depth clipping plane
* @param zfar the distance to the far depth clipping plane
* @return the perspective-projection matrix.
*/
public static Matrix44 frustum(
double left, double right,
double bottom, double top,
double znear, double zfar)
{
return (new Matrix44()).setFrustum(left,right,bottom,top,znear,zfar);
}
/**
* Returns a new perspective-projection matrix. Parameters correspond
* to those for the OpenGL standard function gluPerspective.
* @param fovy the field of view, in degrees, in the vertical direction.
* @param aspect the aspect ratio width/height.
* @param znear the distance to the near depth clipping plane
* @param zfar the distance to the far depth clipping plane
* @return this perspective-projection matrix.
*/
public static Matrix44 perspective(
double fovy, double aspect, double znear, double zfar)
{
return (new Matrix44()).setPerspective(fovy,aspect,znear,zfar);
}
/////////
////
/////
/**
* Sets this matrix to an identity matrix.
* @return this identity matrix.
*/
public Matrix44 setIdentity() {
set(1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
return this;
}
/**
* Sets this matrix to a translation-only matrix.
* @param tx the x component of the translation.
* @param ty the y component of the translation.
* @param tz the z component of the translation.
* @return this translation-only matrix.
*/
public Matrix44 setTranslate(double tx, double ty, double tz) {
set(1.0, 0.0, 0.0, tx,
0.0, 1.0, 0.0, ty,
0.0, 0.0, 1.0, tz,
0.0, 0.0, 0.0, 1.0);
return this;
}
/**
* Sets this matrix to a translation-only matrix.
* @param tv the translation vector.
* @return this translation-only matrix.
*/
public Matrix44 setTranslate(Vector3 tv) {
return setTranslate(tv.x,tv.y,tv.z);
}
/**
* Sets this matrix to a scaling-only matrix.
* @param sx the x component of the scaling.
* @param sy the y component of the scaling.
* @param sz the z component of the scaling.
* @return this scaling-only matrix.
*/
public Matrix44 setScale(double sx, double sy, double sz) {
set( sx, 0.0, 0.0, 0.0,
0.0, sy, 0.0, 0.0,
0.0, 0.0, sz, 0.0,
0.0, 0.0, 0.0, 1.0);
return this;
}
/**
* Sets this matrix to a rotation-only matrix.
* The rotation is about a specified vector axis.
* @param ra the angle of rotation, in degrees.
* @param rx the x component of the vector axis of rotation
* @param ry the y component of the vector axis of rotation
* @param rz the z component of the vector axis of rotation
* @return this rotation-only matrix.
*/
public Matrix44 setRotate(double ra, double rx, double ry, double rz) {
double rs = 1.0/Math.sqrt(rx*rx+ry*ry+rz*rz);
rx *= rs;
ry *= rs;
rz *= rs;
double ca = Math.cos(ra*D2R);
double sa = Math.sin(ra*D2R);
double xx = rx*rx;
double xy = rx*ry;
double xz = rx*rz;
double yx = xy;
double yy = ry*ry;
double yz = ry*rz;
double zx = xz;
double zy = yz;
double zz = rz*rz;
double m00 = xx + ca*(1.0-xx) + sa*(0.0);
double m01 = xy + ca*(0.0-xy) + sa*(-rz);
double m02 = xz + ca*(0.0-xz) + sa*( ry);
double m10 = yx + ca*(0.0-yx) + sa*( rz);
double m11 = yy + ca*(1.0-yy) + sa*(0.0);
double m12 = yz + ca*(0.0-yz) + sa*(-rx);
double m20 = zx + ca*(0.0-zx) + sa*(-ry);
double m21 = zy + ca*(0.0-zy) + sa*( rx);
double m22 = zz + ca*(1.0-zz) + sa*(0.0);
set(m00, m01, m02, 0.0,
m10, m11, m12, 0.0,
m20, m21, m22, 0.0,
0.0, 0.0, 0.0, 1.0);
return this;
}
/**
* Sets this matrix to a rotation-only matrix.
* The rotation is about a specified axis.
* @param ra the angle of rotation, in degrees.
* @param rv the vector axis of rotation.
* @return this rotation-only matrix.
*/
public Matrix44 setRotate(double ra, Vector3 rv) {
return setRotate(ra,rv.x,rv.y,rv.z);
}
/**
* Sets this matrix to a rotation-only matrix.
* The rotation is about the x axis.
* @param ra the angle of rotation, in degrees.
* @return this rotation-only matrix.
*/
public Matrix44 setRotateX(double ra) {
double ca = Math.cos(ra*D2R);
double sa = Math.sin(ra*D2R);
set(1.0, 0.0, 0.0, 0.0,
0.0, ca, -sa, 0.0,
0.0, sa, ca, 0.0,
0.0, 0.0, 0.0, 1.0);
return this;
}
/**
* Sets this matrix to a rotation-only matrix.
* The rotation is about the y axis.
* @param ra the angle of rotation, in degrees.
* @return this rotation-only matrix.
*/
public Matrix44 setRotateY(double ra) {
double ca = Math.cos(ra*D2R);
double sa = Math.sin(ra*D2R);
set( ca, 0.0, sa, 0.0,
0.0, 1.0, 0.0, 0.0,
-sa, 0.0, ca, 0.0,
0.0, 0.0, 0.0, 1.0);
return this;
}
/**
* Sets this matrix to a rotation-only matrix.
* The rotation is about the z axis.
* @param ra the angle of rotation, in degrees.
* @return this rotation-only matrix.
*/
public Matrix44 setRotateZ(double ra) {
double ca = Math.cos(ra*D2R);
double sa = Math.sin(ra*D2R);
set( ca, -sa, 0.0, 0.0,
sa, ca, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
return this;
}
/**
* Sets this matrix to a orthographic-projection matrix. Parameters
* correspond to those for the OpenGL standard function glOrtho.
* @param left the coordinate for the left clipping plane.
* @param right the coordinate for the right clipping plane.
* @param bottom the coordinate for the bottom clipping plane.
* @param top the coordinate for the top clipping plane.
* @param znear the distance to the near depth clipping plane
* @param zfar the distance to the far depth clipping plane
* @return this orthographic-projection matrix.
*/
public Matrix44 setOrtho(
double left, double right,
double bottom, double top,
double znear, double zfar)
{
Check.argument(left!=right,"left!=right");
Check.argument(bottom!=top,"bottom!=top");
Check.argument(znear!=zfar,"znear!=zfar");
double tx = -(right+left)/(right-left);
double ty = -(top+bottom)/(top-bottom);
double tz = -(zfar+znear)/(zfar-znear);
double sx = 2.0/(right-left);
double sy = 2.0/(top-bottom);
double sz = -2.0/(zfar-znear);
set( sx, 0.0, 0.0, tx,
0.0, sy, 0.0, ty,
0.0, 0.0, sz, tz,
0.0, 0.0, 0.0, 1.0);
return this;
}
/**
* Sets this matrix to a perspective-projection matrix. Parameters
* correspond to those for the OpenGL standard function glFrustum.
* @param left the coordinate for the left clipping plane.
* @param right the coordinate for the right clipping plane.
* @param bottom the coordinate for the bottom clipping plane.
* @param top the coordinate for the top clipping plane.
* @param znear the distance to the near depth clipping plane
* @param zfar the distance to the far depth clipping plane
* @return this perspective-projection matrix.
*/
public Matrix44 setFrustum(
double left, double right,
double bottom, double top,
double znear, double zfar)
{
Check.argument(left!=right,"left!=right");
Check.argument(bottom!=top,"bottom!=top");
Check.argument(znear!=zfar,"znear!=zfar");
double sx = 2.0*znear/(right-left);
double sy = 2.0*znear/(top-bottom);
double a = (right+left)/(right-left);
double b = (top+bottom)/(top-bottom);
double c = (znear+zfar)/(znear-zfar);
double d = 2.0*zfar*znear/(znear-zfar);
set( sx, 0.0, a, 0.0,
0.0, sy, b, 0.0,
0.0, 0.0, c, d,
0.0, 0.0, -1.0, 0.0);
return this;
}
/**
* Sets this matrix to a perspective-projection matrix. Parameters
* correspond to those for the OpenGL standard function gluPerspective.
* @param fovy the field of view, in degrees, in the vertical direction.
* @param aspect the aspect ratio width/height.
* @param znear the distance to the near depth clipping plane
* @param zfar the distance to the far depth clipping plane
* @return this perspective-projection matrix.
*/
public Matrix44 setPerspective(
double fovy, double aspect, double znear, double zfar)
{
double t = Math.tan(0.5*fovy*D2R);
double right = t*aspect*znear;
double left = -right;
double top = t*znear;
double bottom = -top;
return setFrustum(left,right,bottom,top,znear,zfar);
}
public String toString() {
StringBuilder sb = new StringBuilder();
for (int i=0; i<4; ++i) {
sb.append("| ");
for (int j=0; j<4; ++j)
sb.append(String.format("% 12.5e ",m[i+j*4]));
sb.append("|\n");
}
return sb.toString();
}
///////////////////////////////////////////////////////////////////////////
// private
private static final double D2R = Math.PI/180.0; // degrees-to-radians
/**
* Computes the matrix product C = AB. The product may be computed
* in place; the arrays a, b, and c may be the same array.
* Returns the product C.
*/
private static double[] mul(double[] a, double[] b, double[] c) {
double a00=a[ 0],a01=a[ 4],a02=a[ 8],a03=a[12],
a10=a[ 1],a11=a[ 5],a12=a[ 9],a13=a[13],
a20=a[ 2],a21=a[ 6],a22=a[10],a23=a[14],
a30=a[ 3],a31=a[ 7],a32=a[11],a33=a[15];
double b00=b[ 0],b01=b[ 4],b02=b[ 8],b03=b[12],
b10=b[ 1],b11=b[ 5],b12=b[ 9],b13=b[13],
b20=b[ 2],b21=b[ 6],b22=b[10],b23=b[14],
b30=b[ 3],b31=b[ 7],b32=b[11],b33=b[15];
c[ 0] = a00*b00+a01*b10+a02*b20+a03*b30;
c[ 1] = a10*b00+a11*b10+a12*b20+a13*b30;
c[ 2] = a20*b00+a21*b10+a22*b20+a23*b30;
c[ 3] = a30*b00+a31*b10+a32*b20+a33*b30;
c[ 4] = a00*b01+a01*b11+a02*b21+a03*b31;
c[ 5] = a10*b01+a11*b11+a12*b21+a13*b31;
c[ 6] = a20*b01+a21*b11+a22*b21+a23*b31;
c[ 7] = a30*b01+a31*b11+a32*b21+a33*b31;
c[ 8] = a00*b02+a01*b12+a02*b22+a03*b32;
c[ 9] = a10*b02+a11*b12+a12*b22+a13*b32;
c[10] = a20*b02+a21*b12+a22*b22+a23*b32;
c[11] = a30*b02+a31*b12+a32*b22+a33*b32;
c[12] = a00*b03+a01*b13+a02*b23+a03*b33;
c[13] = a10*b03+a11*b13+a12*b23+a13*b33;
c[14] = a20*b03+a21*b13+a22*b23+a23*b33;
c[15] = a30*b03+a31*b13+a32*b23+a33*b33;
return c;
}
/**
* Computes the matrix product C = AB'. The product may be computed
* in place; the arrays a, b, and c may be the same array.
* Returns the product C.
*/
private static double[] mult(double[] a, double[] b, double[] c) {
double a00=a[ 0],a01=a[ 4],a02=a[ 8],a03=a[12],
a10=a[ 1],a11=a[ 5],a12=a[ 9],a13=a[13],
a20=a[ 2],a21=a[ 6],a22=a[10],a23=a[14],
a30=a[ 3],a31=a[ 7],a32=a[11],a33=a[15];
double b00=b[ 0],b01=b[ 4],b02=b[ 8],b03=b[12],
b10=b[ 1],b11=b[ 5],b12=b[ 9],b13=b[13],
b20=b[ 2],b21=b[ 6],b22=b[10],b23=b[14],
b30=b[ 3],b31=b[ 7],b32=b[11],b33=b[15];
c[ 0] = a00*b00+a01*b01+a02*b02+a03*b03;
c[ 1] = a10*b00+a11*b01+a12*b02+a13*b03;
c[ 2] = a20*b00+a21*b01+a22*b02+a23*b03;
c[ 3] = a30*b00+a31*b01+a32*b02+a33*b03;
c[ 4] = a00*b10+a01*b11+a02*b12+a03*b13;
c[ 5] = a10*b10+a11*b11+a12*b12+a13*b13;
c[ 6] = a20*b10+a21*b11+a22*b12+a23*b13;
c[ 7] = a30*b10+a31*b11+a32*b12+a33*b13;
c[ 8] = a00*b20+a01*b21+a02*b22+a03*b23;
c[ 9] = a10*b20+a11*b21+a12*b22+a13*b23;
c[10] = a20*b20+a21*b21+a22*b22+a23*b23;
c[11] = a30*b20+a31*b21+a32*b22+a33*b23;
c[12] = a00*b30+a01*b31+a02*b32+a03*b33;
c[13] = a10*b30+a11*b31+a12*b32+a13*b33;
c[14] = a20*b30+a21*b31+a22*b32+a23*b33;
c[15] = a30*b30+a31*b31+a32*b32+a33*b33;
return c;
}
/**
* Computes the matrix product C = A'B. The product may be computed
* in place; the arrays a, b, and c may be the same array.
* Returns the product C.
*/
private static double[] tmul(double[] a, double[] b, double[] c) {
double a00=a[ 0],a01=a[ 4],a02=a[ 8],a03=a[12],
a10=a[ 1],a11=a[ 5],a12=a[ 9],a13=a[13],
a20=a[ 2],a21=a[ 6],a22=a[10],a23=a[14],
a30=a[ 3],a31=a[ 7],a32=a[11],a33=a[15];
double b00=b[ 0],b01=b[ 4],b02=b[ 8],b03=b[12],
b10=b[ 1],b11=b[ 5],b12=b[ 9],b13=b[13],
b20=b[ 2],b21=b[ 6],b22=b[10],b23=b[14],
b30=b[ 3],b31=b[ 7],b32=b[11],b33=b[15];
c[ 0] = a00*b00+a10*b10+a20*b20+a30*b30;
c[ 1] = a01*b00+a11*b10+a21*b20+a31*b30;
c[ 2] = a02*b00+a12*b10+a22*b20+a32*b30;
c[ 3] = a03*b00+a13*b10+a23*b20+a33*b30;
c[ 4] = a00*b01+a10*b11+a20*b21+a30*b31;
c[ 5] = a01*b01+a11*b11+a21*b21+a31*b31;
c[ 6] = a02*b01+a12*b11+a22*b21+a32*b31;
c[ 7] = a03*b01+a13*b11+a23*b21+a33*b31;
c[ 8] = a00*b02+a10*b12+a20*b22+a30*b32;
c[ 9] = a01*b02+a11*b12+a21*b22+a31*b32;
c[10] = a02*b02+a12*b12+a22*b22+a32*b32;
c[11] = a03*b02+a13*b12+a23*b22+a33*b32;
c[12] = a00*b03+a10*b13+a20*b23+a30*b33;
c[13] = a01*b03+a11*b13+a21*b23+a31*b33;
c[14] = a02*b03+a12*b13+a22*b23+a32*b33;
c[15] = a03*b03+a13*b13+a23*b23+a33*b33;
return c;
}
/**
* Compute the inverse B of the specified matrix A. The inverse may be
* computed in place; the arrays a and b may be the same array.
* Returns the inverse B.
*
* This method is based on Cramer's Rule for the inverse of a matrix,
* and it's implementation follows that described in Streaming SIMD
* Extensions - Inverse of 4x4 Matrix, Intel Corporation, Technical
* Report AP-928.
*/
private static double[] invert(double[] a, double[] b) {
// transpose
double t00 = a[ 0];
double t01 = a[ 4];
double t02 = a[ 8];
double t03 = a[12];
double t04 = a[ 1];
double t08 = a[ 2];
double t12 = a[ 3];
double t05 = a[ 5];
double t09 = a[ 6];
double t13 = a[ 7];
double t06 = a[ 9];
double t10 = a[10];
double t14 = a[11];
double t07 = a[13];
double t11 = a[14];
double t15 = a[15];
// pairs for first 8 elements (cofactors)
double u00 = t10*t15;
double u01 = t11*t14;
double u02 = t09*t15;
double u03 = t11*t13;
double u04 = t09*t14;
double u05 = t10*t13;
double u06 = t08*t15;
double u07 = t11*t12;
double u08 = t08*t14;
double u09 = t10*t12;
double u10 = t08*t13;
double u11 = t09*t12;
// first 8 elements (cofactors)
b[ 0] = u00*t05+u03*t06+u04*t07-u01*t05-u02*t06-u05*t07;
b[ 1] = u01*t04+u06*t06+u09*t07-u00*t04-u07*t06-u08*t07;
b[ 2] = u02*t04+u07*t05+u10*t07-u03*t04-u06*t05-u11*t07;
b[ 3] = u05*t04+u08*t05+u11*t06-u04*t04-u09*t05-u10*t06;
b[ 4] = u01*t01+u02*t02+u05*t03-u00*t01-u03*t02-u04*t03;
b[ 5] = u00*t00+u07*t02+u08*t03-u01*t00-u06*t02-u09*t03;
b[ 6] = u03*t00+u06*t01+u11*t03-u02*t00-u07*t01-u10*t03;
b[ 7] = u04*t00+u09*t01+u10*t02-u05*t00-u08*t01-u11*t02;
// pairs for second 8 elements (cofactors)
u00 = t02*t07;
u01 = t03*t06;
u02 = t01*t07;
u03 = t03*t05;
u04 = t01*t06;
u05 = t02*t05;
u06 = t00*t07;
u07 = t03*t04;
u08 = t00*t06;
u09 = t02*t04;
u10 = t00*t05;
u11 = t01*t04;
// second 8 elements (cofactors)
b[ 8] = u00*t13+u03*t14+u04*t15-u01*t13-u02*t14-u05*t15;
b[ 9] = u01*t12+u06*t14+u09*t15-u00*t12-u07*t14-u08*t15;
b[10] = u02*t12+u07*t13+u10*t15-u03*t12-u06*t13-u11*t15;
b[11] = u05*t12+u08*t13+u11*t14-u04*t12-u09*t13-u10*t14;
b[12] = u02*t10+u05*t11+u01*t09-u04*t11-u00*t09-u03*t10;
b[13] = u08*t11+u00*t08+u07*t10-u06*t10-u09*t11-u01*t08;
b[14] = u06*t09+u11*t11+u03*t08-u10*t11-u02*t08-u07*t09;
b[15] = u10*t10+u04*t08+u09*t09-u08*t09-u11*t10-u05*t08;
// determinant
double d = t00*b[0]+t01*b[1]+t02*b[2]+t03*b[3];
// inverse
d = 1.0/d;
b[ 0] *= d; b[ 1] *= d; b[ 2] *= d; b[ 3] *= d;
b[ 4] *= d; b[ 5] *= d; b[ 6] *= d; b[ 7] *= d;
b[ 8] *= d; b[ 9] *= d; b[10] *= d; b[11] *= d;
b[12] *= d; b[13] *= d; b[14] *= d; b[15] *= d;
return b;
}
}