All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.mines.jtk.sgl.Plane Maven / Gradle / Ivy

The newest version!
/****************************************************************************
Copyright 2004, Colorado School of Mines and others.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
****************************************************************************/
package edu.mines.jtk.sgl;

import static java.lang.Math.sqrt;

/**
 * A plane. A plane divides a 3-dimensional space into points above it,
 * points below it, and points within it. The signed distance s from a 
 * point (x,y,z) to a plane is s = a*x + b*y + c*z + d, where (a,b,c,d)
 * are coefficients that define the plane. Points within the plane satisfy 
 * the equation s = 0.
 * 

* @author Dave Hale, Colorado School of Mines * @version 2005.05.30 */ public class Plane { /** * Constructs a plane with specified coefficients. * @param a the coefficient a. * @param b the coefficient b. * @param c the coefficient c. * @param d the coefficient d. */ public Plane(double a, double b, double c, double d) { set(a,b,c,d); } /** * Constructs a plane. The plane will contain the specified point p * and be orthogonal to the specified normal vector n, which points * toward the space above the plane. * @param p the point in the plane. * @param n the normal vector. */ public Plane(Point3 p, Vector3 n) { set(n.x,n.y,n.z,-(n.x*p.x+n.y*p.y+n.z*p.z)); } /** * Constructs a copy of the specified plane. * @param p the plane. */ public Plane(Plane p) { _a = p._a; _b = p._b; _c = p._c; _d = p._d; } /** * Sets the coefficients of this plane. * @param a the coefficient a. * @param b the coefficient b. * @param c the coefficient c. * @param d the coefficient d. */ public void set(double a, double b, double c, double d) { _a = a; _b = b; _c = c; _d = d; normalize(); } /** * Gets the plane coefficient a. * @return the plane coefficient a. */ public double getA() { return _a; } /** * Gets the plane coefficient b. * @return the plane coefficient b. */ public double getB() { return _b; } /** * Gets the plane coefficient c. * @return the plane coefficient c. */ public double getC() { return _c; } /** * Gets the plane coefficient d. * @return the plane coefficient d. */ public double getD() { return _d; } /** * Gets the unit-vector normal to this plane. The vector points toward * the space above the plane. * @return the unit-vector normal. */ public Vector3 getNormal() { return new Vector3(_a,_b,_c); } /** * Returns the signed distance from this plane to a specified point. * Distance is negative for points below the plane, zero for points * within the plane, and positive for points above the plane. * @param x the x coordinate of the point. * @param y the y coordinate of the point. * @param z the z coordinate of the point. * @return the signed distance. */ public double distanceTo(double x, double y, double z) { return _a*x+_b*y+_c*z+_d; } /** * Returns the signed distance from this plane to a specified point. * Distance is negative for points below the plane, zero for points * within the plane, and positive for points above the plane. * @param p the point. * @return the signed distance. */ public double distanceTo(Point3 p) { return distanceTo(p.x,p.y,p.z); } /** * Transforms this plane, given the specified transform matrix. * If the inverse of the transform matrix is known, the method * {@link #transformWithInverse(Matrix44)} is more efficient. *

* Let M denote the matrix that transforms points p from old to new * coordinates; i.e., p' = M*p, where p' denotes a transformed point. * In old coordinates, the plane P = (a,b,c,d) satisfies the equation * a*x + b*y + c*z + d = 0, for all points p = (x,y,z) within the plane. * This method returns a new transformed plane P' = (a',b',c',d') that * satisfies the equation a'*x' + b'*y' + c'*z' + d' = 0 for all * transformed points p' = (x',y',z') within the transformed plane. * @param m the transform matrix. */ public void transform(Matrix44 m) { transformWithInverse(m.inverse()); } /** * Transforms this plane, given the inverse of the transform matrix. * If the inverse of the transform matrix is known, this method is * more efficient than the method {@link #transform(Matrix44)}. * @param mi the inverse of the transform matrix. */ public void transformWithInverse(Matrix44 mi) { // (transpose of inverse matrix) times (plane coefficient vector) double[] m = mi.m; double a = m[ 0]*_a + m[ 1]*_b + m[ 2]*_c + m[ 3]*_d; double b = m[ 4]*_a + m[ 5]*_b + m[ 6]*_c + m[ 7]*_d; double c = m[ 8]*_a + m[ 9]*_b + m[10]*_c + m[11]*_d; double d = m[12]*_a + m[13]*_b + m[14]*_c + m[15]*_d; set(a,b,c,d); } public String toString() { return "("+_a+","+_b+","+_c+","+_d+")"; } /////////////////////////////////////////////////////////////////////////// // private private double _a,_b,_c,_d; private void normalize() { double s = 1.0/sqrt(_a*_a+_b*_b+_c*_c); _a *= s; _b *= s; _c *= s; _d *= s; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy