All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.nps.moves.dis.FundamentalParameterData Maven / Gradle / Ivy

Go to download

An open source implementation of the Distributed Interactive Simulation (DIS) IEEE-1278 protocol

There is a newer version: 5.8
Show newest version
package edu.nps.moves.dis;

import java.util.*;
import java.io.*;
import edu.nps.moves.disenum.*;
import edu.nps.moves.disutil.*;

// Jaxb and Hibernate annotations generally won't work on mobile devices. XML serialization uses jaxb, and
// javax.persistence uses the JPA JSR, aka hibernate. See the Hibernate site for details.
// To generate Java code without these, and without the annotations scattered through the
// see the XMLPG java code generator, and set the boolean useHibernateAnnotations and useJaxbAnnotions 
// to false, and then regenerate the code

import javax.xml.bind.*;            // Used for JAXB XML serialization
import javax.xml.bind.annotation.*; // Used for XML serialization annotations (the @ stuff)
import javax.persistence.*;         // Used for JPA/Hibernate SQL persistence

/**
 * Section 5.2.22. Contains electromagnetic emmision regineratin parameters that are        variable throughout a scenario dependent on the actions of the participants in the simulation. Also provides basic parametric data that may be used to support low-fidelity simulations.
 *
 * Copyright (c) 2008-2010, MOVES Institute, Naval Postgraduate School. All rights reserved.
 * This work is licensed under the BSD open source license, available at https://www.movesinstitute.org/licenses/bsd.html
 *
 * @author DMcG
 */
@Entity  // Hibernate
@Inheritance(strategy=InheritanceType.JOINED)  // Hibernate
public class FundamentalParameterData extends Object implements Serializable
{
   /** Primary key for hibernate, not part of the DIS standard */
   private long pk_FundamentalParameterData;

   /** center frequency of the emission in hertz. */
   protected float  frequency;

   /** Bandwidth of the frequencies corresponding to the fequency field. */
   protected float  frequencyRange;

   /** Effective radiated power for the emission in DdBm. For a      radar noise jammer, indicates the peak of the transmitted power. */
   protected float  effectiveRadiatedPower;

   /** Average repetition frequency of the emission in hertz. */
   protected float  pulseRepetitionFrequency;

   /** Average pulse width  of the emission in microseconds. */
   protected float  pulseWidth;

   /** Specifies the beam azimuth an elevation centers and corresponding half-angles     to describe the scan volume */
   protected float  beamAzimuthCenter;

   /** Specifies the beam azimuth sweep to determine scan volume */
   protected float  beamAzimuthSweep;

   /** Specifies the beam elevation center to determine scan volume */
   protected float  beamElevationCenter;

   /** Specifies the beam elevation sweep to determine scan volume */
   protected float  beamElevationSweep;

   /** allows receiver to synchronize its regenerated scan pattern to     that of the emmitter. Specifies the percentage of time a scan is through its pattern from its origion. */
   protected float  beamSweepSync;


/** Constructor */
 public FundamentalParameterData()
 {
 }

@Transient  // Marked as transient to prevent hibernate from thinking this is a persistent property
public int getMarshalledSize()
{
   int marshalSize = 0; 

   marshalSize = marshalSize + 4;  // frequency
   marshalSize = marshalSize + 4;  // frequencyRange
   marshalSize = marshalSize + 4;  // effectiveRadiatedPower
   marshalSize = marshalSize + 4;  // pulseRepetitionFrequency
   marshalSize = marshalSize + 4;  // pulseWidth
   marshalSize = marshalSize + 4;  // beamAzimuthCenter
   marshalSize = marshalSize + 4;  // beamAzimuthSweep
   marshalSize = marshalSize + 4;  // beamElevationCenter
   marshalSize = marshalSize + 4;  // beamElevationSweep
   marshalSize = marshalSize + 4;  // beamSweepSync

   return marshalSize;
}


/** Primary key for hibernate, not part of the DIS standard */
@Id
@GeneratedValue(strategy=GenerationType.AUTO)
public long getPk_FundamentalParameterData()
{
   return pk_FundamentalParameterData;
}

/** Hibernate primary key, not part of the DIS standard */
public void setPk_FundamentalParameterData(long pKeyName)
{
   this.pk_FundamentalParameterData = pKeyName;
}

public void setFrequency(float pFrequency)
{ frequency = pFrequency;
}

@XmlAttribute // Jaxb
@Basic       // Hibernate
public float getFrequency()
{ return frequency; 
}

public void setFrequencyRange(float pFrequencyRange)
{ frequencyRange = pFrequencyRange;
}

@XmlAttribute // Jaxb
@Basic       // Hibernate
public float getFrequencyRange()
{ return frequencyRange; 
}

public void setEffectiveRadiatedPower(float pEffectiveRadiatedPower)
{ effectiveRadiatedPower = pEffectiveRadiatedPower;
}

@XmlAttribute // Jaxb
@Basic       // Hibernate
public float getEffectiveRadiatedPower()
{ return effectiveRadiatedPower; 
}

public void setPulseRepetitionFrequency(float pPulseRepetitionFrequency)
{ pulseRepetitionFrequency = pPulseRepetitionFrequency;
}

@XmlAttribute // Jaxb
@Basic       // Hibernate
public float getPulseRepetitionFrequency()
{ return pulseRepetitionFrequency; 
}

public void setPulseWidth(float pPulseWidth)
{ pulseWidth = pPulseWidth;
}

@XmlAttribute // Jaxb
@Basic       // Hibernate
public float getPulseWidth()
{ return pulseWidth; 
}

public void setBeamAzimuthCenter(float pBeamAzimuthCenter)
{ beamAzimuthCenter = pBeamAzimuthCenter;
}

@XmlAttribute // Jaxb
@Basic       // Hibernate
public float getBeamAzimuthCenter()
{ return beamAzimuthCenter; 
}

public void setBeamAzimuthSweep(float pBeamAzimuthSweep)
{ beamAzimuthSweep = pBeamAzimuthSweep;
}

@XmlAttribute // Jaxb
@Basic       // Hibernate
public float getBeamAzimuthSweep()
{ return beamAzimuthSweep; 
}

public void setBeamElevationCenter(float pBeamElevationCenter)
{ beamElevationCenter = pBeamElevationCenter;
}

@XmlAttribute // Jaxb
@Basic       // Hibernate
public float getBeamElevationCenter()
{ return beamElevationCenter; 
}

public void setBeamElevationSweep(float pBeamElevationSweep)
{ beamElevationSweep = pBeamElevationSweep;
}

@XmlAttribute // Jaxb
@Basic       // Hibernate
public float getBeamElevationSweep()
{ return beamElevationSweep; 
}

public void setBeamSweepSync(float pBeamSweepSync)
{ beamSweepSync = pBeamSweepSync;
}

@XmlAttribute // Jaxb
@Basic       // Hibernate
public float getBeamSweepSync()
{ return beamSweepSync; 
}


public void marshal(DataOutputStream dos)
{
    try 
    {
       dos.writeFloat( (float)frequency);
       dos.writeFloat( (float)frequencyRange);
       dos.writeFloat( (float)effectiveRadiatedPower);
       dos.writeFloat( (float)pulseRepetitionFrequency);
       dos.writeFloat( (float)pulseWidth);
       dos.writeFloat( (float)beamAzimuthCenter);
       dos.writeFloat( (float)beamAzimuthSweep);
       dos.writeFloat( (float)beamElevationCenter);
       dos.writeFloat( (float)beamElevationSweep);
       dos.writeFloat( (float)beamSweepSync);
    } // end try 
    catch(Exception e)
    { 
      System.out.println(e);}
    } // end of marshal method

public void unmarshal(DataInputStream dis)
{
    try 
    {
       frequency = dis.readFloat();
       frequencyRange = dis.readFloat();
       effectiveRadiatedPower = dis.readFloat();
       pulseRepetitionFrequency = dis.readFloat();
       pulseWidth = dis.readFloat();
       beamAzimuthCenter = dis.readFloat();
       beamAzimuthSweep = dis.readFloat();
       beamElevationCenter = dis.readFloat();
       beamElevationSweep = dis.readFloat();
       beamSweepSync = dis.readFloat();
    } // end try 
   catch(Exception e)
    { 
      System.out.println(e); 
    }
 } // end of unmarshal method 


/**
 * Packs a Pdu into the ByteBuffer.
 * @throws java.nio.BufferOverflowException if buff is too small
 * @throws java.nio.ReadOnlyBufferException if buff is read only
 * @see java.nio.ByteBuffer
 * @param buff The ByteBuffer at the position to begin writing
 * @since ??
 */
public void marshal(java.nio.ByteBuffer buff)
{
       buff.putFloat( (float)frequency);
       buff.putFloat( (float)frequencyRange);
       buff.putFloat( (float)effectiveRadiatedPower);
       buff.putFloat( (float)pulseRepetitionFrequency);
       buff.putFloat( (float)pulseWidth);
       buff.putFloat( (float)beamAzimuthCenter);
       buff.putFloat( (float)beamAzimuthSweep);
       buff.putFloat( (float)beamElevationCenter);
       buff.putFloat( (float)beamElevationSweep);
       buff.putFloat( (float)beamSweepSync);
    } // end of marshal method

/**
 * Unpacks a Pdu from the underlying data.
 * @throws java.nio.BufferUnderflowException if buff is too small
 * @see java.nio.ByteBuffer
 * @param buff The ByteBuffer at the position to begin reading
 * @since ??
 */
public void unmarshal(java.nio.ByteBuffer buff)
{
       frequency = buff.getFloat();
       frequencyRange = buff.getFloat();
       effectiveRadiatedPower = buff.getFloat();
       pulseRepetitionFrequency = buff.getFloat();
       pulseWidth = buff.getFloat();
       beamAzimuthCenter = buff.getFloat();
       beamAzimuthSweep = buff.getFloat();
       beamElevationCenter = buff.getFloat();
       beamElevationSweep = buff.getFloat();
       beamSweepSync = buff.getFloat();
 } // end of unmarshal method 


 /*
  * The equals method doesn't always work--mostly it works only on classes that consist only of primitives. Be careful.
  */
@Override
 public boolean equals(Object obj)
 {

    if(this == obj){
      return true;
    }

    if(obj == null){
       return false;
    }

    if(getClass() != obj.getClass())
        return false;

    return equalsImpl(obj);
 }

 /**
  * Compare all fields that contribute to the state, ignoring
 transient and static fields, for this and the supplied object
  * @param obj the object to compare to
  * @return true if the objects are equal, false otherwise.
  */
 public boolean equalsImpl(Object obj)
 {
     boolean ivarsEqual = true;

    if(!(obj instanceof FundamentalParameterData))
        return false;

     final FundamentalParameterData rhs = (FundamentalParameterData)obj;

     if( ! (frequency == rhs.frequency)) ivarsEqual = false;
     if( ! (frequencyRange == rhs.frequencyRange)) ivarsEqual = false;
     if( ! (effectiveRadiatedPower == rhs.effectiveRadiatedPower)) ivarsEqual = false;
     if( ! (pulseRepetitionFrequency == rhs.pulseRepetitionFrequency)) ivarsEqual = false;
     if( ! (pulseWidth == rhs.pulseWidth)) ivarsEqual = false;
     if( ! (beamAzimuthCenter == rhs.beamAzimuthCenter)) ivarsEqual = false;
     if( ! (beamAzimuthSweep == rhs.beamAzimuthSweep)) ivarsEqual = false;
     if( ! (beamElevationCenter == rhs.beamElevationCenter)) ivarsEqual = false;
     if( ! (beamElevationSweep == rhs.beamElevationSweep)) ivarsEqual = false;
     if( ! (beamSweepSync == rhs.beamSweepSync)) ivarsEqual = false;

    return ivarsEqual;
 }
} // end of class




© 2015 - 2024 Weber Informatics LLC | Privacy Policy