edu.nps.moves.dismobile.FundamentalParameterData Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of open-dis Show documentation
Show all versions of open-dis Show documentation
An open source implementation of the Distributed Interactive Simulation (DIS) IEEE-1278 protocol
package edu.nps.moves.dismobile;
import java.util.*;
import java.io.*;
import edu.nps.moves.disenum.*;
import edu.nps.moves.disutil.*;
/**
* Section 5.2.22. Contains electromagnetic emmision regineratin parameters that are variable throughout a scenario dependent on the actions of the participants in the simulation. Also provides basic parametric data that may be used to support low-fidelity simulations.
*
* Copyright (c) 2008-2010, MOVES Institute, Naval Postgraduate School. All rights reserved.
* This work is licensed under the BSD open source license, available at https://www.movesinstitute.org/licenses/bsd.html
*
* @author DMcG
*/
public class FundamentalParameterData extends Object implements Serializable
{
/** center frequency of the emission in hertz. */
protected float frequency;
/** Bandwidth of the frequencies corresponding to the fequency field. */
protected float frequencyRange;
/** Effective radiated power for the emission in DdBm. For a radar noise jammer, indicates the peak of the transmitted power. */
protected float effectiveRadiatedPower;
/** Average repetition frequency of the emission in hertz. */
protected float pulseRepetitionFrequency;
/** Average pulse width of the emission in microseconds. */
protected float pulseWidth;
/** Specifies the beam azimuth an elevation centers and corresponding half-angles to describe the scan volume */
protected float beamAzimuthCenter;
/** Specifies the beam azimuth sweep to determine scan volume */
protected float beamAzimuthSweep;
/** Specifies the beam elevation center to determine scan volume */
protected float beamElevationCenter;
/** Specifies the beam elevation sweep to determine scan volume */
protected float beamElevationSweep;
/** allows receiver to synchronize its regenerated scan pattern to that of the emmitter. Specifies the percentage of time a scan is through its pattern from its origion. */
protected float beamSweepSync;
/** Constructor */
public FundamentalParameterData()
{
}
public int getMarshalledSize()
{
int marshalSize = 0;
marshalSize = marshalSize + 4; // frequency
marshalSize = marshalSize + 4; // frequencyRange
marshalSize = marshalSize + 4; // effectiveRadiatedPower
marshalSize = marshalSize + 4; // pulseRepetitionFrequency
marshalSize = marshalSize + 4; // pulseWidth
marshalSize = marshalSize + 4; // beamAzimuthCenter
marshalSize = marshalSize + 4; // beamAzimuthSweep
marshalSize = marshalSize + 4; // beamElevationCenter
marshalSize = marshalSize + 4; // beamElevationSweep
marshalSize = marshalSize + 4; // beamSweepSync
return marshalSize;
}
public void setFrequency(float pFrequency)
{ frequency = pFrequency;
}
public float getFrequency()
{ return frequency;
}
public void setFrequencyRange(float pFrequencyRange)
{ frequencyRange = pFrequencyRange;
}
public float getFrequencyRange()
{ return frequencyRange;
}
public void setEffectiveRadiatedPower(float pEffectiveRadiatedPower)
{ effectiveRadiatedPower = pEffectiveRadiatedPower;
}
public float getEffectiveRadiatedPower()
{ return effectiveRadiatedPower;
}
public void setPulseRepetitionFrequency(float pPulseRepetitionFrequency)
{ pulseRepetitionFrequency = pPulseRepetitionFrequency;
}
public float getPulseRepetitionFrequency()
{ return pulseRepetitionFrequency;
}
public void setPulseWidth(float pPulseWidth)
{ pulseWidth = pPulseWidth;
}
public float getPulseWidth()
{ return pulseWidth;
}
public void setBeamAzimuthCenter(float pBeamAzimuthCenter)
{ beamAzimuthCenter = pBeamAzimuthCenter;
}
public float getBeamAzimuthCenter()
{ return beamAzimuthCenter;
}
public void setBeamAzimuthSweep(float pBeamAzimuthSweep)
{ beamAzimuthSweep = pBeamAzimuthSweep;
}
public float getBeamAzimuthSweep()
{ return beamAzimuthSweep;
}
public void setBeamElevationCenter(float pBeamElevationCenter)
{ beamElevationCenter = pBeamElevationCenter;
}
public float getBeamElevationCenter()
{ return beamElevationCenter;
}
public void setBeamElevationSweep(float pBeamElevationSweep)
{ beamElevationSweep = pBeamElevationSweep;
}
public float getBeamElevationSweep()
{ return beamElevationSweep;
}
public void setBeamSweepSync(float pBeamSweepSync)
{ beamSweepSync = pBeamSweepSync;
}
public float getBeamSweepSync()
{ return beamSweepSync;
}
public void marshal(DataOutputStream dos)
{
try
{
dos.writeFloat( (float)frequency);
dos.writeFloat( (float)frequencyRange);
dos.writeFloat( (float)effectiveRadiatedPower);
dos.writeFloat( (float)pulseRepetitionFrequency);
dos.writeFloat( (float)pulseWidth);
dos.writeFloat( (float)beamAzimuthCenter);
dos.writeFloat( (float)beamAzimuthSweep);
dos.writeFloat( (float)beamElevationCenter);
dos.writeFloat( (float)beamElevationSweep);
dos.writeFloat( (float)beamSweepSync);
} // end try
catch(Exception e)
{
System.out.println(e);}
} // end of marshal method
public void unmarshal(DataInputStream dis)
{
try
{
frequency = dis.readFloat();
frequencyRange = dis.readFloat();
effectiveRadiatedPower = dis.readFloat();
pulseRepetitionFrequency = dis.readFloat();
pulseWidth = dis.readFloat();
beamAzimuthCenter = dis.readFloat();
beamAzimuthSweep = dis.readFloat();
beamElevationCenter = dis.readFloat();
beamElevationSweep = dis.readFloat();
beamSweepSync = dis.readFloat();
} // end try
catch(Exception e)
{
System.out.println(e);
}
} // end of unmarshal method
/**
* Packs a Pdu into the ByteBuffer.
* @throws java.nio.BufferOverflowException if buff is too small
* @throws java.nio.ReadOnlyBufferException if buff is read only
* @see java.nio.ByteBuffer
* @param buff The ByteBuffer at the position to begin writing
* @since ??
*/
public void marshal(java.nio.ByteBuffer buff)
{
buff.putFloat( (float)frequency);
buff.putFloat( (float)frequencyRange);
buff.putFloat( (float)effectiveRadiatedPower);
buff.putFloat( (float)pulseRepetitionFrequency);
buff.putFloat( (float)pulseWidth);
buff.putFloat( (float)beamAzimuthCenter);
buff.putFloat( (float)beamAzimuthSweep);
buff.putFloat( (float)beamElevationCenter);
buff.putFloat( (float)beamElevationSweep);
buff.putFloat( (float)beamSweepSync);
} // end of marshal method
/**
* Unpacks a Pdu from the underlying data.
* @throws java.nio.BufferUnderflowException if buff is too small
* @see java.nio.ByteBuffer
* @param buff The ByteBuffer at the position to begin reading
* @since ??
*/
public void unmarshal(java.nio.ByteBuffer buff)
{
frequency = buff.getFloat();
frequencyRange = buff.getFloat();
effectiveRadiatedPower = buff.getFloat();
pulseRepetitionFrequency = buff.getFloat();
pulseWidth = buff.getFloat();
beamAzimuthCenter = buff.getFloat();
beamAzimuthSweep = buff.getFloat();
beamElevationCenter = buff.getFloat();
beamElevationSweep = buff.getFloat();
beamSweepSync = buff.getFloat();
} // end of unmarshal method
/*
* The equals method doesn't always work--mostly it works only on classes that consist only of primitives. Be careful.
*/
@Override
public boolean equals(Object obj)
{
if(this == obj){
return true;
}
if(obj == null){
return false;
}
if(getClass() != obj.getClass())
return false;
return equalsImpl(obj);
}
/**
* Compare all fields that contribute to the state, ignoring
transient and static fields, for this
and the supplied object
* @param obj the object to compare to
* @return true if the objects are equal, false otherwise.
*/
public boolean equalsImpl(Object obj)
{
boolean ivarsEqual = true;
if(!(obj instanceof FundamentalParameterData))
return false;
final FundamentalParameterData rhs = (FundamentalParameterData)obj;
if( ! (frequency == rhs.frequency)) ivarsEqual = false;
if( ! (frequencyRange == rhs.frequencyRange)) ivarsEqual = false;
if( ! (effectiveRadiatedPower == rhs.effectiveRadiatedPower)) ivarsEqual = false;
if( ! (pulseRepetitionFrequency == rhs.pulseRepetitionFrequency)) ivarsEqual = false;
if( ! (pulseWidth == rhs.pulseWidth)) ivarsEqual = false;
if( ! (beamAzimuthCenter == rhs.beamAzimuthCenter)) ivarsEqual = false;
if( ! (beamAzimuthSweep == rhs.beamAzimuthSweep)) ivarsEqual = false;
if( ! (beamElevationCenter == rhs.beamElevationCenter)) ivarsEqual = false;
if( ! (beamElevationSweep == rhs.beamElevationSweep)) ivarsEqual = false;
if( ! (beamSweepSync == rhs.beamSweepSync)) ivarsEqual = false;
return ivarsEqual;
}
} // end of class