All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.stanford.nlp.maxent.Features Maven / Gradle / Ivy

Go to download

Stanford Parser processes raw text in English, Chinese, German, Arabic, and French, and extracts constituency parse trees.

There is a newer version: 3.9.2
Show newest version
/**
 * Title:        StanfordMaxEnt

* Description: A Maximum Entropy Toolkit

* Copyright: Copyright (c) Kristina Toutanova

* Company: Stanford University

* @author Kristina Toutanova * @version 1.0 */ package edu.stanford.nlp.maxent; import edu.stanford.nlp.util.Index; import edu.stanford.nlp.util.IntPair; import java.io.BufferedReader; import java.io.FileReader; import java.util.ArrayList; /** * An ArrayList of Feature */ public class Features { private ArrayList f = new ArrayList(); private static int maxValue = 11000000; public Features() { } public void add(Feature m) { f.add(m); } public void removeLast() { f.remove(f.size() - 1); } public Feature get(int index) { return f.get(index); } public int size() { return f.size(); } public Experiments domain() { get(0); return Feature.domain; } public void clean() { } public void print() { for (int i = 0; i < size(); i++) { get(i).print(); } } /** * reads in the features from a file, having already read the * experiments */ public Features(String filename, Experiments domain) { Exception e1 = new Exception("Incorrect data file format!"); Index instanceIndex = domain.createIndex(); try { BufferedReader in = new BufferedReader(new FileReader(filename)); String s; while (true) { s = in.readLine(); if (s.equals("")) { break; } } if (s == null) { throw e1; } s = in.readLine(); if (!s.startsWith("")) { throw e1; } if (!s.endsWith("")) { throw e1; } int index1 = s.indexOf(">"); int index2 = s.lastIndexOf("<"); String fSt = s.substring(index1 + 1, index2); System.out.println(fSt); int number = Integer.parseInt(fSt); System.out.println("fSize is " + number); int[] arrIndexes = new int[maxValue]; double[] arrValues = new double[maxValue]; for (int f = 0; f < number; f++) { String line = in.readLine(); int indSp = -1; int current = 0; while ((indSp = line.indexOf(" ")) > -1) { int x = Integer.parseInt(line.substring(0, indSp)); line = line.substring(indSp + 1); indSp = line.indexOf(" "); if (indSp == -1) { indSp = line.length(); } int y = Integer.parseInt(line.substring(0, indSp)); line = line.substring(indSp + 1); indSp = line.indexOf(" "); if (indSp == -1) { indSp = line.length(); } double val = Double.parseDouble(line.substring(0, indSp)); if (indSp < line.length()) { line = line.substring(indSp + 1); } arrIndexes[current] = instanceIndex.indexOf(new IntPair(x, y)); arrValues[current] = val; current++; } int[] indValues = new int[current]; double[] values = new double[current]; for (int j = 0; j < current; j++) { indValues[j] = arrIndexes[j]; values[j] = arrValues[j]; } Feature bf = new Feature(domain, indValues, values, instanceIndex); this.add(bf); }// for f } catch (Exception e) { e.printStackTrace(); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy