All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.stanford.nlp.optimization.QNMinimizer Maven / Gradle / Ivy

Go to download

Stanford Parser processes raw text in English, Chinese, German, Arabic, and French, and extracts constituency parse trees.

There is a newer version: 3.9.2
Show newest version
package edu.stanford.nlp.optimization;

import java.io.FileOutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Set;

import edu.stanford.nlp.io.RuntimeIOException;
import edu.stanford.nlp.math.ArrayMath;
import edu.stanford.nlp.util.CallbackFunction;
import edu.stanford.nlp.util.Generics;


/**
 *
 * An implementation of L-BFGS for Quasi Newton unconstrained minimization.
 *
 * The general outline of the algorithm is taken from:
 * 
* Numerical Optimization (second edition) 2006 * Jorge Nocedal and Stephen J. Wright *
* A variety of different options are available. * *

LINESEARCHES

* * BACKTRACKING: This routine * simply starts with a guess for step size of 1. If the step size doesn't * supply a sufficient decrease in the function value the step is updated * through step = 0.1*step. This method is certainly simpler, but doesn't allow * for an increase in step size, and isn't well suited for Quasi Newton methods. * * MINPACK: This routine is based off of the implementation used in MINPACK. * This routine finds a point satisfying the Wolfe conditions, which state that * a point must have a sufficiently smaller function value, and a gradient of * smaller magnitude. This provides enough to prove theoretically quadratic * convergence. In order to find such a point the linesearch first finds an * interval which must contain a satisfying point, and then progressively * reduces that interval all using cubic or quadratic interpolation. * * SCALING: L-BFGS allows the initial guess at the hessian to be updated at each * step. Standard BFGS does this by approximating the hessian as a scaled * identity matrix. To use this method set the scaleOpt to SCALAR. A better way * of approximate the hessian is by using a scaling diagonal matrix. The * diagonal can then be updated as more information comes in. This method can be * used by setting scaleOpt to DIAGONAL. * * * CONVERGENCE: Previously convergence was gauged by looking at the average * decrease per step dividing that by the current value and terminating when * that value because smaller than TOL. This method fails when the function * value approaches zero, so two other convergence criteria are used. The first * stores the initial gradient norm |g0|, then terminates when the new gradient * norm, |g| is sufficiently smaller: i.e., |g| < eps*|g0| the second checks if * |g| < eps*max( 1 , |x| ) which is essentially checking to see if the gradient * is numerically zero. * Another convergence criteria is added where termination is triggered if no * improvements are observed after X (set by terminateOnEvalImprovementNumOfEpoch) * iterations over some validation test set as evaluated by Evaluator * * Each of these convergence criteria can be turned on or off by setting the * flags: *
* private boolean useAveImprovement = true; * private boolean useRelativeNorm = true; * private boolean useNumericalZero = true; * private boolean useEvalImprovement = false; *
* * To use the QNMinimizer first construct it using *
* QNMinimizer qn = new QNMinimizer(mem, true) *
* mem - the number of previous estimate vector pairs to * store, generally 15 is plenty. true - this tells the QN to use the MINPACK * linesearch with DIAGONAL scaling. false would lead to the use of the criteria * used in the old QNMinimizer class. * * Then call: *
* qn.minimize(dfunction,convergenceTolerance,initialGuess,maxFunctionEvaluations); *
* * @author akleeman */ public class QNMinimizer implements Minimizer, HasEvaluators { private int fevals = 0; // the number of function evaluations private int maxFevals = -1; private int mem = 10; // the number of s,y pairs to retain for BFGS private int its = 0; // the number of iterations private final Function monitor; private boolean quiet; private static final NumberFormat nf = new DecimalFormat("0.000E0"); private static final NumberFormat nfsec = new DecimalFormat("0.00"); // for times private static final double ftol = 1e-4; // Linesearch parameters private double gtol = 0.9; private static final double aMin = 1e-12; // Min step size private static final double aMax = 1e12; // Max step size private static final double p66 = 0.66; // used to check getting more than 2/3 of width improvement private static final double p5 = 0.5; // Some other magic constant private static final int a = 0; // used as array index private static final int f = 1; // used as array index private static final int g = 2; // used as array index public boolean outputToFile = false; private boolean success = false; private boolean bracketed = false; // used for linesearch private QNInfo presetInfo = null; private boolean noHistory = true; // parameters for OWL-QN (L-BFGS with L1-regularization) private boolean useOWLQN = false; private double lambdaOWL = 0; private boolean useAveImprovement = true; private boolean useRelativeNorm = true; private boolean useNumericalZero = true; private boolean useEvalImprovement = false; private boolean useMaxItr = false; private int maxItr = 0; private boolean suppressTestPrompt = false; private int terminateOnEvalImprovementNumOfEpoch = 1; private int evaluateIters = 0; // Evaluate every x iterations (0 = no evaluation) private int startEvaluateIters = 0; // starting evaluation after x iterations private Evaluator[] evaluators; // separate set of evaluators to check how optimization is going private transient CallbackFunction iterCallbackFunction = null; public enum eState { TERMINATE_MAXEVALS, TERMINATE_RELATIVENORM, TERMINATE_GRADNORM, TERMINATE_AVERAGEIMPROVE, CONTINUE, TERMINATE_EVALIMPROVE, TERMINATE_MAXITR } public enum eLineSearch { BACKTRACK, MINPACK } public enum eScaling { DIAGONAL, SCALAR } private eLineSearch lsOpt = eLineSearch.MINPACK; private eScaling scaleOpt = eScaling.DIAGONAL; private eState state = eState.CONTINUE; public QNMinimizer() { this((Function) null); } public QNMinimizer(int m) { this(null, m); } public QNMinimizer(int m, boolean useRobustOptions) { this(null, m, useRobustOptions); } public QNMinimizer(Function monitor) { this.monitor = monitor; } public QNMinimizer(Function monitor, int m) { this(monitor, m, false); } public QNMinimizer(Function monitor, int m, boolean useRobustOptions) { this.monitor = monitor; mem = m; if (useRobustOptions) { this.setRobustOptions(); } } public QNMinimizer(FloatFunction monitor) { throw new UnsupportedOperationException("Doesn't support floats yet"); } public void setOldOptions() { useAveImprovement = true; useRelativeNorm = false; useNumericalZero = false; lsOpt = eLineSearch.BACKTRACK; scaleOpt = eScaling.SCALAR; } public final void setRobustOptions() { useAveImprovement = true; useRelativeNorm = true; useNumericalZero = true; lsOpt = eLineSearch.MINPACK; scaleOpt = eScaling.DIAGONAL; } @Override public void setEvaluators(int iters, Evaluator[] evaluators) { this.evaluateIters = iters; this.evaluators = evaluators; } public void setEvaluators(int iters, int startEvaluateIters, Evaluator[] evaluators) { this.evaluateIters = iters; this.startEvaluateIters = startEvaluateIters; this.evaluators = evaluators; } public void setIterationCallbackFunction(CallbackFunction func){ iterCallbackFunction = func; } public void terminateOnRelativeNorm(boolean toTerminate) { useRelativeNorm = toTerminate; } public void terminateOnNumericalZero(boolean toTerminate) { useNumericalZero = toTerminate; } public void terminateOnAverageImprovement(boolean toTerminate) { useAveImprovement = toTerminate; } public void terminateOnEvalImprovement(boolean toTerminate) { useEvalImprovement = toTerminate; } public void terminateOnMaxItr(int maxItr) { if (maxItr > 0) { useMaxItr = true; this.maxItr = maxItr; } } public void suppressTestPrompt(boolean suppressTestPrompt) { this.suppressTestPrompt = suppressTestPrompt; } public void setTerminateOnEvalImprovementNumOfEpoch(int terminateOnEvalImprovementNumOfEpoch) { this.terminateOnEvalImprovementNumOfEpoch = terminateOnEvalImprovementNumOfEpoch; } public void useMinPackSearch() { lsOpt = eLineSearch.MINPACK; } public void useBacktracking() { lsOpt = eLineSearch.BACKTRACK; } public void useDiagonalScaling() { scaleOpt = eScaling.DIAGONAL; } public void useScalarScaling() { scaleOpt = eScaling.SCALAR; } public boolean wasSuccessful() { return success; } public void shutUp() { this.quiet = true; } public void setM(int m) { mem = m; } public static class SurpriseConvergence extends Throwable { private static final long serialVersionUID = 4290178321643529559L; public SurpriseConvergence(String s) { super(s); } } private static class MaxEvaluationsExceeded extends Throwable { private static final long serialVersionUID = 8044806163343218660L; public MaxEvaluationsExceeded(String s) { super(s); } } /** * The Record class is used to collect information about the function value * over a series of iterations. This information is used to determine * convergence, and to (attempt to) ensure numerical errors are not an issue. * It can also be used for plotting the results of the optimization routine. * * @author akleeman */ public class Record { // convergence options. // have average difference like before // zero gradient. // for convergence test private final List evals = new ArrayList(); private final List values = new ArrayList(); List gNorms = new ArrayList(); // List xNorms = new ArrayList(); private final List funcEvals = new ArrayList(); private final List time = new ArrayList(); // gNormInit: This makes it so that if for some reason // you try and divide by the initial norm before it's been // initialized you don't get a NAN but you will also never // get false convergence. private double gNormInit = Double.MIN_VALUE; private double relativeTOL = 1e-8; private double TOL = 1e-6; private double EPS = 1e-6; private long startTime; private double gNormLast; // This is used for convergence. private double[] xLast; private int maxSize = 100; // This will control the number of func values / // gradients to retain. private Function mon = null; private boolean quiet = false; private boolean memoryConscious = true; private PrintWriter outputFile = null; private int noImproveItrCount = 0; private double[] xBest; public Record(boolean beQuiet, Function monitor, double tolerance) { this.quiet = beQuiet; this.mon = monitor; this.TOL = tolerance; } public Record(boolean beQuiet, Function monitor, double tolerance, PrintWriter output) { this.quiet = beQuiet; this.mon = monitor; this.TOL = tolerance; this.outputFile = output; } public Record(boolean beQuiet, Function monitor, double tolerance, double eps) { this.quiet = beQuiet; this.mon = monitor; this.TOL = tolerance; this.EPS = eps; } public void setEPS(double eps) { EPS = eps; } public void setTOL(double tolerance) { TOL = tolerance; } public void start(double val, double[] grad) { start(val, grad, null); } /* * Stops output to stdout. */ public void shutUp() { this.quiet = true; } /* * Initialize the class, this starts the timer, and initiates the gradient * norm for use with convergence. */ public void start(double val, double[] grad, double[] x) { startTime = System.currentTimeMillis(); gNormInit = ArrayMath.norm(grad); xLast = x; writeToFile(1, val, gNormInit, 0.0); if (x != null) { monitorX(x); } } private void writeToFile(double fevals, double val, double gNorm, double time) { if (outputFile != null) { outputFile.println(fevals + "," + val + "," + gNorm + "," + time); } } public void add(double val, double[] grad, double[] x, int fevals, double evalScore) { if (!memoryConscious) { if (gNorms.size() > maxSize) { gNorms.remove(0); } if (time.size() > maxSize) { time.remove(0); } if (funcEvals.size() > maxSize) { funcEvals.remove(0); } gNorms.add(gNormLast); time.add(howLong()); funcEvals.add(fevals); } else { maxSize = 10; } gNormLast = ArrayMath.norm(grad); if (values.size() > maxSize) { values.remove(0); } values.add(val); if (evalScore != Double.NEGATIVE_INFINITY) evals.add(evalScore); writeToFile(fevals, val, gNormLast, howLong()); say(nf.format(val) + " " + nfsec.format(howLong()) + "s"); xLast = x; monitorX(x); } public void monitorX(double[] x) { if (this.mon != null) { this.mon.valueAt(x); } } /** * This function checks for convergence through first * order optimality, numerical convergence (i.e., zero numerical * gradient), and also by checking the average improvement. * * @return A value of the enumeration type

eState

which tells the * state of the optimization routine indicating whether the routine should * terminate, and if so why. */ public eState toContinue() { double relNorm = gNormLast / gNormInit; int size = values.size(); double newestVal = values.get(size - 1); double previousVal = (size >= 10 ? values.get(size - 10) : values.get(0)); double averageImprovement = (previousVal - newestVal) / (size >= 10 ? 10 : size); int evalsSize = evals.size(); if (useMaxItr && its >= maxItr) return eState.TERMINATE_MAXITR; if (useEvalImprovement) { int bestInd = -1; double bestScore = Double.NEGATIVE_INFINITY; for (int i = 0; i < evalsSize; i++) { if (evals.get(i) >= bestScore) { bestScore = evals.get(i); bestInd = i; } } if (bestInd == evalsSize-1) { // copy xBest if (xBest == null) xBest = Arrays.copyOf(xLast, xLast.length); else System.arraycopy( xLast, 0, xBest, 0, xLast.length ); } if ((evalsSize - bestInd) >= terminateOnEvalImprovementNumOfEpoch) return eState.TERMINATE_EVALIMPROVE; } // This is used to be able to reproduce results that were trained on the // QNMinimizer before // convergence criteria was updated. if (useAveImprovement && (size > 5 && Math.abs(averageImprovement / newestVal) < TOL)) { return eState.TERMINATE_AVERAGEIMPROVE; } // Check to see if the gradient is sufficiently small if (useRelativeNorm && relNorm <= relativeTOL) { return eState.TERMINATE_RELATIVENORM; } if (useNumericalZero) { // This checks if the gradient is sufficiently small compared to x that // it is treated as zero. if (gNormLast < EPS * Math.max(1.0, ArrayMath.norm_1(xLast))) { // |g| < |x|_1 // First we do the one norm, because that's easiest, and always bigger. if (gNormLast < EPS * Math.max(1.0, ArrayMath.norm(xLast))) { // |g| < max(1,|x|) // Now actually compare with the two norm if we have to. System.err .println("Gradient is numerically zero, stopped on machine epsilon."); return eState.TERMINATE_GRADNORM; } } // give user information about the norms. } say(" |" + nf.format(gNormLast) + "| {" + nf.format(relNorm) + "} " + nf.format(Math.abs(averageImprovement / newestVal)) + " " + (evalsSize > 0 ? evals.get(evalsSize-1).toString() : "-") + " "); return eState.CONTINUE; } /** * Return the time in seconds since this class was created. * @return The time in seconds since this class was created. */ public double howLong() { return ((System.currentTimeMillis() - startTime)) / 1000.0; } public double[] getBest() { return xBest; } } // end class Record /** * The QNInfo class is used to store information about the Quasi Newton * update. it holds all the s,y pairs, updates the diagonal and scales * everything as needed. */ public class QNInfo { // Diagonal Options // Linesearch Options // Memory stuff private List s = null; private List y = null; private List rho = null; private double gamma; public double[] d = null; private int mem; private int maxMem = 20; public eScaling scaleOpt = eScaling.SCALAR; public QNInfo(int size) { s = new ArrayList(); y = new ArrayList(); rho = new ArrayList(); gamma = 1; mem = size; } public QNInfo() { s = new ArrayList(); y = new ArrayList(); rho = new ArrayList(); gamma = 1; mem = maxMem; } public QNInfo(List sList, List yList) { s = new ArrayList(); y = new ArrayList(); rho = new ArrayList(); gamma = 1; setHistory(sList, yList); } public int size() { return s.size(); } public double getRho(int ind) { return rho.get(ind); } public double[] getS(int ind) { return s.get(ind); } public double[] getY(int ind) { return y.get(ind); } public void useDiagonalScaling() { this.scaleOpt = eScaling.DIAGONAL; } public void useScalarScaling() { this.scaleOpt = eScaling.SCALAR; } /* * Free up that memory. */ public void free() { s = null; y = null; rho = null; d = null; } public void clear() { s.clear(); y.clear(); rho.clear(); d = null; } /* * applyInitialHessian(double[] x) * * This function takes the vector x, and applies the best guess at the * initial hessian to this vector, based off available information from * previous updates. */ public void setHistory(List sList, List yList) { int size = sList.size(); for (int i = 0; i < size; i++) { update(sList.get(i), yList.get(i), ArrayMath.innerProduct(yList.get(i), yList.get(i)), ArrayMath.innerProduct(sList.get(i), yList.get(i)), 0, 1.0); } } public double[] applyInitialHessian(double[] x) { switch (scaleOpt) { case SCALAR: say("I"); ArrayMath.multiplyInPlace(x, gamma); break; case DIAGONAL: say("D"); if (d != null) { // Check sizes if (x.length != d.length) { throw new IllegalArgumentException("Vector of incorrect size passed to applyInitialHessian in QNInfo class"); } // Scale element-wise for (int i = 0; i < x.length; i++) { x[i] = x[i] / (d[i]); } } break; } return x; } /* * The update function is used to update the hessian approximation used by * the quasi newton optimization routine. * * If everything has behaved nicely, this involves deciding on a new initial * hessian through scaling or diagonal update, and then storing of the * secant pairs s = x - previousX and y = grad - previousGrad. * * Things can go wrong, if any non convex behavior is detected (s^T y < 0) * or numerical errors are likely the update is skipped. * */ public int update(double[] newX, double[] x, double[] newGrad, double[] grad, double step) throws SurpriseConvergence { // todo: add outofmemory error. double[] newS, newY; double sy, yy, sg; // allocate arrays for new s,y pairs (or replace if the list is already // full) if (mem > 0 && s.size() == mem || s.size() == maxMem) { newS = s.remove(0); newY = y.remove(0); rho.remove(0); } else { newS = new double[x.length]; newY = new double[x.length]; } // Here we construct the new pairs, and check for positive definiteness. sy = 0; yy = 0; sg = 0; for (int i = 0; i < x.length; i++) { newS[i] = newX[i] - x[i]; newY[i] = newGrad[i] - grad[i]; sy += newS[i] * newY[i]; yy += newY[i] * newY[i]; sg += newS[i] * newGrad[i]; } // Apply the updates used for the initial hessian. return update(newS, newY, yy, sy, sg, step); } private class NegativeCurvature extends Throwable { /** * */ private static final long serialVersionUID = 4676562552506850519L; public NegativeCurvature() { } } private class ZeroGradient extends Throwable { /** * */ private static final long serialVersionUID = -4001834044987928521L; public ZeroGradient() { } } public int update(double[] newS, double[] newY, double yy, double sy, double sg, double step) { // Initialize diagonal to the identity if (scaleOpt == eScaling.DIAGONAL && d == null) { d = new double[newS.length]; for (int i = 0; i < d.length; i++) { d[i] = 1.0; } } try { if (sy < 0) { throw new NegativeCurvature(); } if (yy == 0.0) { throw new ZeroGradient(); } switch (scaleOpt) { /* * SCALAR: The standard L-BFGS initial approximation which is just a * scaled identity. */ case SCALAR: gamma = sy / yy; break; /* * DIAGONAL: A diagonal scaling matrix is used as the initial * approximation. The updating method used is used thanks to Andrew * Bradley of the ICME dept. */ case DIAGONAL: double sDs; // Gamma is designed to scale such that a step length of one is // generally accepted. gamma = sy / (step * (sy - sg)); sDs = 0.0; for (int i = 0; i < d.length; i++) { d[i] = gamma * d[i]; sDs += newS[i] * d[i] * newS[i]; } // This diagonal update was introduced by Andrew Bradley for (int i = 0; i < d.length; i++) { d[i] = (1 - d[i] * newS[i] * newS[i] / sDs) * d[i] + newY[i] * newY[i] / sy; } // Here we make sure that the diagonal is alright double minD = ArrayMath.min(d); double maxD = ArrayMath.max(d); // If things have gone bad, just fill with the SCALAR approx. if (minD <= 0 || Double.isInfinite(maxD) || maxD / minD > 1e12) { System.err .println("QNInfo:update() : PROBLEM WITH DIAGONAL UPDATE"); double fill = yy / sy; for (int i = 0; i < d.length; i++) { d[i] = fill; } } } // If s is already of size mem, remove the oldest vector and free it up. if (mem > 0 && s.size() == mem || s.size() == maxMem) { s.remove(0); y.remove(0); rho.remove(0); } // Actually add the pair. s.add(newS); y.add(newY); rho.add(1 / sy); } catch (NegativeCurvature nc) { // NOTE: if applying QNMinimizer to a non convex problem, we would still // like to update the matrix // or we could get stuck in a series of skipped updates. say(" Negative curvature detected, update skipped "); } catch (ZeroGradient zg) { say(" Either convergence, or floating point errors combined with extremely linear region "); } return s.size(); } // end update } // end class QNInfo public void setHistory(List s, List y) { presetInfo = new QNInfo(s, y); } /* * computeDir() * * This function will calculate an approximation of the inverse hessian based * off the seen s,y vector pairs. This particular approximation uses the BFGS * update. * */ private void computeDir(double[] dir, double[] fg, double[] x, QNInfo qn, Function func) throws SurpriseConvergence { System.arraycopy(fg, 0, dir, 0, fg.length); int mmm = qn.size(); double[] as = new double[mmm]; for (int i = mmm - 1; i >= 0; i--) { as[i] = qn.getRho(i) * ArrayMath.innerProduct(qn.getS(i), dir); plusAndConstMult(dir, qn.getY(i), -as[i], dir); } // multiply by hessian approximation qn.applyInitialHessian(dir); for (int i = 0; i < mmm; i++) { double b = qn.getRho(i) * ArrayMath.innerProduct(qn.getY(i), dir); plusAndConstMult(dir, qn.getS(i), as[i] - b, dir); } ArrayMath.multiplyInPlace(dir, -1); if (useOWLQN) { // step (2) in Galen & Gao 2007 constrainSearchDir(dir, fg, x, func); } } // computes d = a + b * c private static double[] plusAndConstMult(double[] a, double[] b, double c, double[] d) { for (int i = 0; i < a.length; i++) { d[i] = a[i] + c * b[i]; } return d; } private double doEvaluation(double[] x) { // Evaluate solution if (evaluators == null) return Double.NEGATIVE_INFINITY; double score = 0; for (Evaluator eval:evaluators) { if (!suppressTestPrompt) say(" Evaluating: " + eval.toString()); score = eval.evaluate(x); } return score; } public float[] minimize(DiffFloatFunction function, float functionTolerance, float[] initial) { throw new UnsupportedOperationException("Float not yet supported for QN"); } @Override public double[] minimize(DiffFunction function, double functionTolerance, double[] initial) { return minimize(function, functionTolerance, initial, -1); } @Override public double[] minimize(DiffFunction dfunction, double functionTolerance, double[] initial, int maxFunctionEvaluations) { return minimize(dfunction, functionTolerance, initial, maxFunctionEvaluations, null); } public double[] minimize(DiffFunction dfunction, double functionTolerance, double[] initial, int maxFunctionEvaluations, QNInfo qn) { say("QNMinimizer called on double function of " + dfunction.domainDimension() + " variables,"); if (mem > 0) { sayln(" using M = " + mem + "."); } else { sayln(" using dynamic setting of M."); } if (qn == null && presetInfo == null) { qn = new QNInfo(mem); noHistory = true; } else if (presetInfo != null) { qn = presetInfo; noHistory = false; } else if (qn != null) { noHistory = false; } double[] x, newX, grad, newGrad, dir; double value; its = 0; fevals = 0; success = false; qn.scaleOpt = scaleOpt; // initialize weights x = initial; // initialize gradient grad = new double[x.length]; newGrad = new double[x.length]; newX = new double[x.length]; dir = new double[x.length]; // initialize function value and gradient (gradient is stored in grad inside // evaluateFunction) value = evaluateFunction(dfunction, x, grad); if (useOWLQN) { double norm = l1NormOWL(x, dfunction); value += norm * lambdaOWL; grad = pseudoGradientOWL(x, grad, dfunction); // step (1) in Galen & Gao except we are not computing v yet } PrintWriter outFile = null; PrintWriter infoFile = null; if (outputToFile) { try { String baseName = "QN_m" + mem + "_" + lsOpt.toString() + "_" + scaleOpt.toString(); outFile = new PrintWriter(new FileOutputStream(baseName + ".output"), true); infoFile = new PrintWriter(new FileOutputStream(baseName + ".info"), true); infoFile.println(dfunction.domainDimension() + "; DomainDimension "); infoFile.println(mem + "; memory"); } catch (IOException e) { throw new RuntimeIOException("Caught IOException outputting QN data to file", e); } } Record rec = new Record(quiet, monitor, functionTolerance, outFile); // sets the original gradient and x. Also stores the monitor. rec.start(value, grad, x); // Check if max Evaluations and Iterations have been provided. maxFevals = (maxFunctionEvaluations > 0) ? maxFunctionEvaluations : Integer.MAX_VALUE; // maxIterations = (maxIterations > 0) ? maxIterations : Integer.MAX_VALUE; sayln(" An explanation of the output:"); sayln("Iter The number of iterations"); sayln("evals The number of function evaluations"); sayln("SCALING Diagonal scaling was used; Scaled Identity"); sayln("LINESEARCH [## M steplength] Minpack linesearch"); sayln(" 1-Function value was too high"); sayln(" 2-Value ok, gradient positive, positive curvature"); sayln(" 3-Value ok, gradient negative, positive curvature"); sayln(" 4-Value ok, gradient negative, negative curvature"); sayln(" [.. B] Backtracking"); sayln("VALUE The current function value"); sayln("TIME Total elapsed time"); sayln("|GNORM| The current norm of the gradient"); sayln("{RELNORM} The ratio of the current to initial gradient norms"); sayln("AVEIMPROVE The average improvement / current value"); sayln("EVALSCORE The last available eval score"); sayln(); sayln("Iter ## evals ## [LINESEARCH] VALUE TIME |GNORM| {RELNORM} AVEIMPROVE EVALSCORE"); // Beginning of the loop. do { try { sayln(); boolean doEval = (its >= 0 && its >= startEvaluateIters && evaluateIters > 0 && its % evaluateIters == 0); its += 1; double newValue; double[] newPoint = new double[3]; // initialized in loop say("Iter " + its + " evals " + fevals + " "); // Compute the search direction say("<"); computeDir(dir, grad, x, qn, dfunction); say("> "); // sanity check dir boolean hasNaNDir = false; boolean hasNaNGrad = false; for (int i = 0; i < dir.length; i++) { if (dir[i] != dir[i]) hasNaNDir = true; if (grad[i] != grad[i]) hasNaNGrad = true; } if (hasNaNDir && !hasNaNGrad) { say("(NaN dir likely due to Hessian approx - resetting) "); qn.clear(); // re-compute the search direction say("<"); computeDir(dir, grad, x, qn, dfunction); say("> "); } // perform line search say("["); if (useOWLQN) { // only linear search is allowed for OWL-QN newPoint = lineSearchBacktrackOWL(dfunction, dir, x, newX, grad, value); say("B"); } else { // switch between line search options. switch (lsOpt) { case BACKTRACK: newPoint = lineSearchBacktrack(dfunction, dir, x, newX, grad, value); say("B"); break; case MINPACK: newPoint = lineSearchMinPack(dfunction, dir, x, newX, grad, value, functionTolerance); say("M"); break; default: throw new IllegalArgumentException("Invalid line search option for QNMinimizer."); } } newValue = newPoint[f]; say(" "); say(nf.format(newPoint[a])); say("] "); // This shouldn't actually evaluate anything since that should have been // done in the lineSearch. System.arraycopy(dfunction.derivativeAt(newX), 0, newGrad, 0, newGrad.length); // This is where all the s, y updates are applied. qn.update(newX, x, newGrad, grad, newPoint[a]); // step (4) in Galen & Gao 2007 if (useOWLQN) { // pseudo gradient newGrad = pseudoGradientOWL(newX, newGrad, dfunction); } double evalScore = Double.NEGATIVE_INFINITY; if (doEval) { evalScore = doEvaluation(newX); } // Add the current value and gradient to the records, this also monitors // X and writes to output rec.add(newValue, newGrad, newX, fevals, evalScore); //If you wanna call a function and do whatever with the information if(iterCallbackFunction != null){ iterCallbackFunction.callback(newX, its, newValue, newGrad); } // shift value = newValue; // double[] temp = x; // x = newX; // newX = temp; System.arraycopy(newX, 0, x, 0, x.length); System.arraycopy(newGrad, 0, grad, 0, newGrad.length); if (quiet) { System.err.print("."); } if (fevals > maxFevals) { throw new MaxEvaluationsExceeded(" Exceeded in minimize() loop "); } } catch (SurpriseConvergence s) { sayln(); sayln("QNMinimizer aborted due to surprise convergence"); break; } catch (MaxEvaluationsExceeded m) { sayln(); sayln("QNMinimizer aborted due to maximum number of function evaluations"); sayln(m.toString()); sayln("** This is not an acceptable termination of QNMinimizer, consider"); sayln("** increasing the max number of evaluations, or safeguarding your"); sayln("** program by checking the QNMinimizer.wasSuccessful() method."); break; } catch (OutOfMemoryError oome) { sayln(); if ( ! qn.s.isEmpty()) { qn.s.remove(0); qn.y.remove(0); qn.rho.remove(0); qn.mem = qn.s.size(); System.err.println("Caught OutOfMemoryError, changing m = " + qn.mem); } else { throw oome; } } } while ((state = rec.toContinue()) == eState.CONTINUE); // do if (evaluateIters > 0) { // do final evaluation double evalScore = (useEvalImprovement ? doEvaluation(rec.getBest()) : doEvaluation(x)); sayln("final evalScore is: " + evalScore); } // // Announce the reason minimization has terminated. // System.err.println(); switch (state) { case TERMINATE_GRADNORM: System.err .println("QNMinimizer terminated due to numerically zero gradient: |g| < EPS max(1,|x|) "); success = true; break; case TERMINATE_RELATIVENORM: System.err .println("QNMinimizer terminated due to sufficient decrease in gradient norms: |g|/|g0| < TOL "); success = true; break; case TERMINATE_AVERAGEIMPROVE: System.err .println("QNMinimizer terminated due to average improvement: | newest_val - previous_val | / |newestVal| < TOL "); success = true; break; case TERMINATE_MAXITR: System.err .println("QNMinimizer terminated due to reached max iteration " + maxItr ); success = true; break; case TERMINATE_EVALIMPROVE: System.err .println("QNMinimizer terminated due to no improvement on eval "); success = true; x = rec.getBest(); break; default: System.err.println("QNMinimizer terminated without converging"); success = false; break; } double completionTime = rec.howLong(); sayln("Total time spent in optimization: " + nfsec.format(completionTime) + "s"); if (outputToFile) { infoFile.println(completionTime + "; Total Time "); infoFile.println(fevals + "; Total evaluations"); infoFile.close(); outFile.close(); } qn.free(); return x; } // end minimize() private void sayln() { if (!quiet) { System.err.println(); } } private void sayln(String s) { if (!quiet) { System.err.println(s); } } private void say(String s) { if (!quiet) { System.err.print(s); } } // todo [cdm 2013]: Can this be sped up by returning a Pair rather than copying array? private double evaluateFunction(DiffFunction dfunc, double[] x, double[] grad) { System.arraycopy(dfunc.derivativeAt(x), 0, grad, 0, grad.length); fevals += 1; return dfunc.valueAt(x); } /** To set QNMinimizer to use L1 regularization, call this method before use, * with the boolean set true, and the appropriate lambda parameter. * * @param use Whether to use Orthant-wise optimization * @param lambda The L1 regularization parameter. */ public void useOWLQN(boolean use, double lambda) { this.useOWLQN = use; this.lambdaOWL = lambda; } private static Set initializeParamRange(Function func, double[] x) { Set paramRange; if (func instanceof HasRegularizerParamRange) { paramRange = ((HasRegularizerParamRange)func).getRegularizerParamRange(x); } else { paramRange = Generics.newHashSet(x.length); for (int i = 0; i < x.length; i++) { paramRange.add(i); } } return paramRange; } private static double[] projectOWL(double[] x, double[] orthant, Function func) { Set paramRange = initializeParamRange(func, x); for (int i : paramRange) { if (x[i] * orthant[i] <= 0) x[i] = 0; } return x; } private static double l1NormOWL(double[] x, Function func) { Set paramRange = initializeParamRange(func, x); double sum = 0.0; for (int i: paramRange) { sum += Math.abs(x[i]); } return sum; } private static void constrainSearchDir(double[] dir, double[] fg, double[] x, Function func) { Set paramRange = initializeParamRange(func, x); for (int i: paramRange) { if (dir[i] * fg[i] >= 0.0) { dir[i] = 0.0; } } } private double[] pseudoGradientOWL(double[] x, double[] grad, Function func) { Set paramRange = initializeParamRange(func, x); // initialized below double[] newGrad = new double[grad.length]; // compute pseudo gradient for (int i = 0; i < x.length; i++) { if (paramRange.contains(i)) { if (x[i] < 0.0) { // Differentiable newGrad[i] = grad[i] - lambdaOWL; } else if (x[i] > 0.0) { // Differentiable newGrad[i] = grad[i] + lambdaOWL; } else { if (grad[i] < -lambdaOWL) { // Take the right partial derivative newGrad[i] = grad[i] + lambdaOWL; } else if (grad[i] > lambdaOWL) { // Take the left partial derivative newGrad[i] = grad[i] - lambdaOWL; } else { newGrad[i] = 0.0; } } } else { newGrad[i] = grad[i]; } } return newGrad; } /* * lineSearchBacktrackOWL is the linesearch used for L1 regularization. * it only satisfies sufficient descent not the Wolfe conditions. */ private double[] lineSearchBacktrackOWL(Function func, double[] dir, double[] x, double[] newX, double[] grad, double lastValue) throws MaxEvaluationsExceeded { /* Choose the orthant for the new point. */ double[] orthant = new double[x.length]; for (int i = 0; i < orthant.length; i++) { orthant[i] = (x[i] == 0.0) ? -grad[i] : x[i]; } // c1 can be anything between 0 and 1, exclusive (usu. 1/10 - 1/2) double step, c1; // for first few steps, we have less confidence in our initial step-size a // so scale back quicker if (its <= 2) { step = 0.1; c1 = 0.1; } else { step = 1.0; c1 = 0.1; } // should be small e.g. 10^-5 ... 10^-1 double c = 0.01; // c = c * normGradInDir; double[] newPoint = new double[3]; while (true) { plusAndConstMult(x, dir, step, newX); // The current point is projected onto the orthant projectOWL(newX, orthant, func); // step (3) in Galen & Gao 2007 // Evaluate the function and gradient values double value = func.valueAt(newX); // Compute the L1 norm of the variables and add it to the object value double norm = l1NormOWL(newX, func); value += norm * lambdaOWL; newPoint[f] = value; double dgtest = 0.0; for (int i = 0;i < x.length ;i++) { dgtest += (newX[i] - x[i]) * grad[i]; } if (newPoint[f] <= lastValue + c * dgtest) break; else { if (newPoint[f] < lastValue) { // an improvement, but not good enough... suspicious! say("!"); } else { say("."); } } step = c1 * step; } newPoint[a] = step; fevals += 1; if (fevals > maxFevals) { throw new MaxEvaluationsExceeded( " Exceeded during linesearch() Function "); } return newPoint; } /* * lineSearchBacktrack is the original linesearch used for the first version * of QNMinimizer. it only satisfies sufficient descent not the Wolfe * conditions. */ private double[] lineSearchBacktrack(Function func, double[] dir, double[] x, double[] newX, double[] grad, double lastValue) throws MaxEvaluationsExceeded { double normGradInDir = ArrayMath.innerProduct(dir, grad); say("(" + nf.format(normGradInDir) + ")"); if (normGradInDir > 0) { say("{WARNING--- direction of positive gradient chosen!}"); } // c1 can be anything between 0 and 1, exclusive (usu. 1/10 - 1/2) double step, c1; // for first few steps, we have less confidence in our initial step-size a // so scale back quicker if (its <= 2) { step = 0.1; c1 = 0.1; } else { step = 1.0; c1 = 0.1; } // should be small e.g. 10^-5 ... 10^-1 double c = 0.01; // double v = func.valueAt(x); // c = c * mult(grad, dir); c = c * normGradInDir; double[] newPoint = new double[3]; while ((newPoint[f] = func.valueAt((plusAndConstMult(x, dir, step, newX)))) > lastValue + c * step) { fevals += 1; if (newPoint[f] < lastValue) { // an improvement, but not good enough... suspicious! say("!"); } else { say("."); } step = c1 * step; } newPoint[a] = step; fevals += 1; if (fevals > maxFevals) { throw new MaxEvaluationsExceeded( " Exceeded during linesearch() Function "); } return newPoint; } private double[] lineSearchMinPack(DiffFunction dfunc, double[] dir, double[] x, double[] newX, double[] grad, double f0, double tol) throws MaxEvaluationsExceeded { double xtrapf = 4.0; int info = 0; int infoc = 1; bracketed = false; boolean stage1 = true; double width = aMax - aMin; double width1 = 2 * width; // double[] wa = x; // Should check input parameters double g0 = ArrayMath.innerProduct(grad, dir); if (g0 >= 0) { // We're looking in a direction of positive gradient. This won't work. // set dir = -grad for (int i = 0; i < x.length; i++) { dir[i] = -grad[i]; } g0 = ArrayMath.innerProduct(grad, dir); } double gTest = ftol * g0; double[] newPt = new double[3]; double[] bestPt = new double[3]; double[] endPt = new double[3]; newPt[a] = 1.0; // Always guess 1 first, this should be right if the // function is "nice" and BFGS is working. if (its == 1 && noHistory) { newPt[a] = 1e-1; } bestPt[a] = 0.0; bestPt[f] = f0; bestPt[g] = g0; endPt[a] = 0.0; endPt[f] = f0; endPt[g] = g0; // int cnt = 0; do { double stpMin; // = aMin; [cdm: this initialization was always overridden below] double stpMax; // = aMax; [cdm: this initialization was always overridden below] if (bracketed) { stpMin = Math.min(bestPt[a], endPt[a]); stpMax = Math.max(bestPt[a], endPt[a]); } else { stpMin = bestPt[a]; stpMax = newPt[a] + xtrapf * (newPt[a] - bestPt[a]); } newPt[a] = Math.max(newPt[a], aMin); newPt[a] = Math.min(newPt[a], aMax); // Use the best point if we have some sort of strange termination // conditions. if ((bracketed && (newPt[a] <= stpMin || newPt[a] >= stpMax)) || fevals >= maxFevals || infoc == 0 || (bracketed && stpMax - stpMin <= tol * stpMax)) { // todo: below.. plusAndConstMult(x, dir, bestPt[a], newX); newPt[f] = bestPt[f]; newPt[a] = bestPt[a]; } newPt[f] = dfunc.valueAt((plusAndConstMult(x, dir, newPt[a], newX))); newPt[g] = ArrayMath.innerProduct(dfunc.derivativeAt(newX), dir); double fTest = f0 + newPt[a] * gTest; fevals += 1; // Check and make sure everything is normal. if ((bracketed && (newPt[a] <= stpMin || newPt[a] >= stpMax)) || infoc == 0) { info = 6; say(" line search failure: bracketed but no feasible found "); } if (newPt[a] == aMax && newPt[f] <= fTest && newPt[g] <= gTest) { info = 5; say(" line search failure: sufficient decrease, but gradient is more negative "); } if (newPt[a] == aMin && (newPt[f] > fTest || newPt[g] >= gTest)) { info = 4; say(" line search failure: minimum step length reached "); } if (fevals >= maxFevals) { info = 3; throw new MaxEvaluationsExceeded( " Exceeded during lineSearchMinPack() Function "); } if (bracketed && stpMax - stpMin <= tol * stpMax) { info = 2; say(" line search failure: interval is too small "); } if (newPt[f] <= fTest && Math.abs(newPt[g]) <= -gtol * g0) { info = 1; } if (info != 0) { return newPt; } // this is the first stage where we look for a point that is lower and // increasing if (stage1 && newPt[f] <= fTest && newPt[g] >= Math.min(ftol, gtol) * g0) { stage1 = false; } // A modified function is used to predict the step only if // we have not obtained a step for which the modified // function has a non-positive function value and non-negative // derivative, and if a lower function value has been // obtained but the decrease is not sufficient. if (stage1 && newPt[f] <= bestPt[f] && newPt[f] > fTest) { newPt[f] = newPt[f] - newPt[a] * gTest; bestPt[f] = bestPt[f] - bestPt[a] * gTest; endPt[f] = endPt[f] - endPt[a] * gTest; newPt[g] = newPt[g] - gTest; bestPt[g] = bestPt[g] - gTest; endPt[g] = endPt[g] - gTest; infoc = getStep(/* x, dir, newX, f0, g0, */ newPt, bestPt, endPt, stpMin, stpMax); bestPt[f] = bestPt[f] + bestPt[a] * gTest; endPt[f] = endPt[f] + endPt[a] * gTest; bestPt[g] = bestPt[g] + gTest; endPt[g] = endPt[g] + gTest; } else { infoc = getStep(/* x, dir, newX, f0, g0, */ newPt, bestPt, endPt, stpMin, stpMax); } if (bracketed) { if (Math.abs(endPt[a] - bestPt[a]) >= p66 * width1) { newPt[a] = bestPt[a] + p5 * (endPt[a] - bestPt[a]); } width1 = width; width = Math.abs(endPt[a] - bestPt[a]); } } while (true); } /** * getStep() * * THIS FUNCTION IS A TRANSLATION OF A TRANSLATION OF THE MINPACK SUBROUTINE * cstep(). Dianne O'Leary July 1991 * * It was then interpreted from the implementation supplied by Andrew * Bradley. Modifications have been made for this particular application. * * This function is used to find a new safe guarded step to be used for * line search procedures. * */ private int getStep( /* double[] x, double[] dir, double[] newX, double f0, double g0, // None of these were used */ double[] newPt, double[] bestPt, double[] endPt, double stpMin, double stpMax) throws MaxEvaluationsExceeded { // Should check for input errors. int info; // = 0; always set in the if below boolean bound; // = false; always set in the if below double theta, gamma, p, q, r, s, stpc, stpq, stpf; double signG = newPt[g] * bestPt[g] / Math.abs(bestPt[g]); // // First case. A higher function value. // The minimum is bracketed. If the cubic step is closer // to stx than the quadratic step, the cubic step is taken, // else the average of the cubic and quadratic steps is taken. // if (newPt[f] > bestPt[f]) { info = 1; bound = true; theta = 3 * (bestPt[f] - newPt[f]) / (newPt[a] - bestPt[a]) + bestPt[g] + newPt[g]; s = Math.max(Math.max(theta, newPt[g]), bestPt[g]); gamma = s * Math.sqrt((theta / s) * (theta / s) - (bestPt[g] / s) * (newPt[g] / s)); if (newPt[a] < bestPt[a]) { gamma = -gamma; } p = (gamma - bestPt[g]) + theta; q = ((gamma - bestPt[g]) + gamma) + newPt[g]; r = p / q; stpc = bestPt[a] + r * (newPt[a] - bestPt[a]); stpq = bestPt[a] + ((bestPt[g] / ((bestPt[f] - newPt[f]) / (newPt[a] - bestPt[a]) + bestPt[g])) / 2) * (newPt[a] - bestPt[a]); if (Math.abs(stpc - bestPt[a]) < Math.abs(stpq - bestPt[a])) { stpf = stpc; } else { stpf = stpq; // stpf = stpc + (stpq - stpc)/2; } bracketed = true; if (newPt[a] < 0.1) { stpf = 0.01 * stpf; } } else if (signG < 0.0) { // // Second case. A lower function value and derivatives of // opposite sign. The minimum is bracketed. If the cubic // step is closer to stx than the quadratic (secant) step, // the cubic step is taken, else the quadratic step is taken. // info = 2; bound = false; theta = 3 * (bestPt[f] - newPt[f]) / (newPt[a] - bestPt[a]) + bestPt[g] + newPt[g]; s = Math.max(Math.max(theta, bestPt[g]), newPt[g]); gamma = s * Math.sqrt((theta / s) * (theta / s) - (bestPt[g] / s) * (newPt[g] / s)); if (newPt[a] > bestPt[a]) { gamma = -gamma; } p = (gamma - newPt[g]) + theta; q = ((gamma - newPt[g]) + gamma) + bestPt[g]; r = p / q; stpc = newPt[a] + r * (bestPt[a] - newPt[a]); stpq = newPt[a] + (newPt[g] / (newPt[g] - bestPt[g])) * (bestPt[a] - newPt[a]); if (Math.abs(stpc - newPt[a]) > Math.abs(stpq - newPt[a])) { stpf = stpc; } else { stpf = stpq; } bracketed = true; } else if (Math.abs(newPt[g]) < Math.abs(bestPt[g])) { // // Third case. A lower function value, derivatives of the // same sign, and the magnitude of the derivative decreases. // The cubic step is only used if the cubic tends to infinity // in the direction of the step or if the minimum of the cubic // is beyond stp. Otherwise the cubic step is defined to be // either stpmin or stpmax. The quadratic (secant) step is also // computed and if the minimum is bracketed then the the step // closest to stx is taken, else the step farthest away is taken. // info = 3; bound = true; theta = 3 * (bestPt[f] - newPt[f]) / (newPt[a] - bestPt[a]) + bestPt[g] + newPt[g]; s = Math.max(Math.max(theta, bestPt[g]), newPt[g]); gamma = s * Math.sqrt(Math.max(0.0, (theta / s) * (theta / s) - (bestPt[g] / s) * (newPt[g] / s))); if (newPt[a] < bestPt[a]) { gamma = -gamma; } p = (gamma - bestPt[g]) + theta; q = ((gamma - bestPt[g]) + gamma) + newPt[g]; r = p / q; if (r < 0.0 && gamma != 0.0) { stpc = newPt[a] + r * (bestPt[a] - newPt[a]); } else if (newPt[a] > bestPt[a]) { stpc = stpMax; } else { stpc = stpMin; } stpq = newPt[a] + (newPt[g] / (newPt[g] - bestPt[g])) * (bestPt[a] - newPt[a]); if (bracketed) { if (Math.abs(newPt[a] - stpc) < Math.abs(newPt[a] - stpq)) { stpf = stpc; } else { stpf = stpq; } } else { if (Math.abs(newPt[a] - stpc) > Math.abs(newPt[a] - stpq)) { stpf = stpc; } else { stpf = stpq; } } } else { // // Fourth case. A lower function value, derivatives of the // same sign, and the magnitude of the derivative does // not decrease. If the minimum is not bracketed, the step // is either stpmin or stpmax, else the cubic step is taken. // info = 4; bound = false; if (bracketed) { theta = 3 * (bestPt[f] - newPt[f]) / (newPt[a] - bestPt[a]) + bestPt[g] + newPt[g]; s = Math.max(Math.max(theta, bestPt[g]), newPt[g]); gamma = s * Math.sqrt((theta / s) * (theta / s) - (bestPt[g] / s) * (newPt[g] / s)); if (newPt[a] > bestPt[a]) { gamma = -gamma; } p = (gamma - newPt[g]) + theta; q = ((gamma - newPt[g]) + gamma) + bestPt[g]; r = p / q; stpc = newPt[a] + r * (bestPt[a] - newPt[a]); stpf = stpc; } else if (newPt[a] > bestPt[a]) { stpf = stpMax; } else { stpf = stpMin; } } // // Update the interval of uncertainty. This update does not // depend on the new step or the case analysis above. // if (newPt[f] > bestPt[f]) { copy(newPt, endPt); } else { if (signG < 0.0) { copy(bestPt, endPt); } copy(newPt, bestPt); } say(String.valueOf(info)); // // Compute the new step and safeguard it. // stpf = Math.min(stpMax, stpf); stpf = Math.max(stpMin, stpf); newPt[a] = stpf; if (bracketed && bound) { if (endPt[a] > bestPt[a]) { newPt[a] = Math.min(bestPt[a] + p66 * (endPt[a] - bestPt[a]), newPt[a]); } else { newPt[a] = Math.max(bestPt[a] + p66 * (endPt[a] - bestPt[a]), newPt[a]); } } return info; } private static void copy(double[] src, double[] dest) { System.arraycopy(src, 0, dest, 0, src.length); } // // // // private double[] lineSearchNocedal(DiffFunction dfunc, double[] dir, // double[] x, double[] newX, double[] grad, double f0) throws // MaxEvaluationsExceeded { // // // double g0 = ArrayMath.innerProduct(grad,dir); // if(g0 > 0){ // //We're looking in a direction of positive gradient. This wont' work. // //set dir = -grad // plusAndConstMult(new double[x.length],grad,-1,dir); // g0 = ArrayMath.innerProduct(grad,dir); // } // say("(" + nf.format(g0) + ")"); // // // double[] newPoint = new double[3]; // double[] prevPoint = new double[3]; // newPoint[a] = 1.0; //Always guess 1 first, this should be right if the // function is "nice" and BFGS is working. // // //Special guess for the first iteration. // if(its == 1){ // double aLin = - f0 / (ftol*g0); // //Keep aLin within aMin and 1 for the first guess. But make a more // intelligent guess based off the gradient // aLin = Math.min(1.0, aLin); // aLin = Math.max(aMin, aLin); // newPoint[a] = aLin; // Guess low at first since we have no idea of scale at // first. // } // // prevPoint[a] = 0.0; // prevPoint[f] = f0; // prevPoint[g] = g0; // // int cnt = 0; // // do{ // newPoint[f] = dfunc.valueAt((plusAndConstMult(x, dir, newPoint[a], newX))); // newPoint[g] = ArrayMath.innerProduct(dfunc.derivativeAt(newX),dir); // fevals += 1; // // //If fNew > f0 + small*aNew*g0 or fNew > fPrev // if( (newPoint[f] > f0 + ftol*newPoint[a]*g0) || newPoint[f] > prevPoint[f] // ){ // //We know there must be a point that satisfies the strong wolfe conditions // between // //the previous and new point, so search between these points. // say("->"); // return zoom(dfunc,x,dir,newX,f0,g0,prevPoint,newPoint); // } // // //Here we check if the magnitude of the gradient has decreased, if // //it is more negative we can expect to find a much better point // //by stepping a little farther. // // //If |gNew| < 0.9999 |g0| // if( Math.abs(newPoint[g]) <= -gtol*g0 ){ // //This is exactly what we wanted // return newPoint; // } // // if (newPoint[g] > 0){ // //Hmm, our step is too big to be a satisfying point, lets look backwards. // say("<-");//say("^"); // // return zoom(dfunc,x,dir,newX,f0,g0,newPoint,prevPoint); // } // // //if we made it here, our function value has decreased enough, but the // gradient is more negative. // //we should increase our step size, since we have potential to decrease the // function // //value a lot more. // newPoint[a] *= 10; // this is stupid, we should interpolate it. since we // already have info for quadratic at least. // newPoint[f] = Double.NaN; // newPoint[g] = Double.NaN; // cnt +=1; // say("*"); // // //if(cnt > 10 || fevals > maxFevals){ // if(fevals > maxFevals){ throw new MaxEvaluationsExceeded(" Exceeded during // zoom() Function ");} // // if(newPoint[a] > aMax){ // System.err.println(" max stepsize reached. This is unusual. "); // System.exit(1); // } // // }while(true); // // } // private double interpolate( double[] point0, double[] point1){ // double newAlpha; // double intvl = Math.abs(point0[a] -point1[a]); // //if(point2 == null){ // if( Double.isNaN(point0[g]) ){ // //We dont know the gradient at aLow so do bisection // newAlpha = 0.5*(point0[a] + point1[a]); // }else{ // //We know the gradient so do Quadratic 2pt // newAlpha = interpolateQuadratic2pt(point0,point1); // } // //If the newAlpha is outside of the bounds just do bisection. // if( ((newAlpha > point0[a]) && (newAlpha > point1[a])) || // ((newAlpha < point0[a]) && (newAlpha < point1[a])) ){ // //bisection. // return 0.5*(point0[a] + point1[a]); // } // //If we aren't moving fast enough, revert to bisection. // if( ((newAlpha/intvl) < 1e-6) || ((newAlpha/intvl) > (1- 1e-6)) ){ // //say("b"); // return 0.5*(point0[a] + point1[a]); // } // return newAlpha; // } /* * private double interpolate( List pointList ,) { * * int n = pointList.size(); double newAlpha = 0.0; * * if( n > 2){ newAlpha = * interpolateCubic(pointList.get(0),pointList.get(n-2),pointList.get(n-1)); * }else if(n == 2){ * * //Only have two points * * if( Double.isNaN(pointList.get(0)[gInd]) ){ // We don't know the gradient at * aLow so do bisection newAlpha = 0.5*(pointList.get(0)[aInd] + * pointList.get(1)[aInd]); }else{ // We know the gradient so do Quadratic 2pt * newAlpha = interpolateQuadratic2pt(pointList.get(0),pointList.get(1)); } * * }else { //not enough info to interpolate with! * System.err.println("QNMinimizer:interpolate() attempt to interpolate with * only one point."); System.exit(1); } * * return newAlpha; * } */ // Returns the minimizer of a quadratic running through point (a0,f0) with // derivative g0 and passing through (a1,f1). // private double interpolateQuadratic2pt(double[] pt0, double[] pt1){ // if( Double.isNaN(pt0[g]) ){ // System.err.println("QNMinimizer:interpolateQuadratic - Gradient at point // zero doesn't exist, interpolation failed"); // System.exit(1); // } // double aDif = pt1[a]-pt0[a]; // double fDif = pt1[f]-pt0[f]; // return (- pt0[g]*aDif*aDif)/(2*(fDif-pt0[g]*aDif)) + pt0[a]; // } // private double interpolateCubic(double[] pt0, double[] pt1, double[] pt2){ // double a0 = pt1[a]-pt0[a]; // double a1 = pt2[a]-pt0[a]; // double f0 = pt1[f]-pt0[f]; // double f1 = pt2[f]-pt0[f]; // double g0 = pt0[g]; // double[][] mat = new double[2][2]; // double[] rhs = new double[2]; // double[] coefs = new double[2]; // double scale = 1/(a0*a0*a1*a1*(a1-a0)); // mat[0][0] = a0*a0; // mat[0][1] = -a1*a1; // mat[1][0] = -a0*a0*a0; // mat[1][1] = a1*a1*a1; // rhs[0] = f1 - g0*a1; // rhs[1] = f0 - g0*a0; // for(int i=0;i<2;i++){ // for(int j=0;j<2;j++){ // coefs[i] += mat[i][j]*rhs[j]; // } // coefs[i] *= scale; // } // double a = coefs[0]; // double b = coefs[1]; // double root = b*b-3*a*g0; // if( root < 0 ){ // System.err.println("QNminimizer:interpolateCubic - interpolate failed"); // System.exit(1); // } // return (-b+Math.sqrt(root))/(3*a); // } // private double[] zoom(DiffFunction dfunc, double[] x, double[] dir, // double[] newX, double f0, double g0, double[] bestPoint, double[] endPoint) // throws MaxEvaluationsExceeded { // return zoom(dfunc,x, dir, newX,f0,g0, bestPoint, endPoint,null); // } // private double[] zoom(DiffFunction dfunc, double[] x, double[] dir, // double[] newX, double f0, double g0, double[] bestPt, double[] endPt, // double[] newPt) throws MaxEvaluationsExceeded { // double width = Math.abs(bestPt[a] - endPt[a]); // double reduction = 1.0; // double p66 = 0.66; // int info = 0; // double stpf; // double theta,gamma,s,p,q,r,stpc,stpq; // boolean bound = false; // boolean bracketed = false; // int cnt = 1; // if(newPt == null){ newPt = new double[3]; newPt[a] = // interpolate(bestPt,endPt);}// quadratic interp // do{ // say("."); // newPt[f] = dfunc.valueAt((plusAndConstMult(x, dir, newPt[a] , newX))); // newPt[g] = ArrayMath.innerProduct(dfunc.derivativeAt(newX),dir); // fevals += 1; // //If we have satisfied Wolfe... // //fNew <= f0 + small*aNew*g0 // //|gNew| <= 0.9999*|g0| // //return the point. // if( (newPt[f] <= f0 + ftol*newPt[a]*g0) && Math.abs(newPt[g]) <= -gtol*g0 // ){ // //Sweet, we found a point that satisfies the strong wolfe conditions!!! // lets return it. // return newPt; // }else{ // double signG = newPt[g]*bestPt[g]/Math.abs(bestPt[g]); // //Our new point has a higher function value // if( newPt[f] > bestPt[f]){ // info = 1; // bound = true; // theta = 3*(bestPt[f] - newPt[f])/(newPt[a] - bestPt[a]) + bestPt[g] + // newPt[g]; // s = Math.max(Math.max(theta,newPt[g]), bestPt[g]); // gamma = s*Math.sqrt( (theta/s)*(theta/s) - (bestPt[g]/s)*(newPt[g]/s) ); // if (newPt[a] < bestPt[a]){ // gamma = -gamma; // } // p = (gamma - bestPt[g]) + theta; // q = ((gamma-bestPt[g]) + gamma) + newPt[g]; // r = p/q; // stpc = bestPt[a] + r*(newPt[a] - bestPt[a]); // stpq = bestPt[a] + // ((bestPt[g]/((bestPt[f]-newPt[f])/(newPt[a]-bestPt[a])+bestPt[g]))/2)*(newPt[a] // - bestPt[a]); // if ( Math.abs(stpc-bestPt[a]) < Math.abs(stpq - bestPt[a] )){ // stpf = stpc; // } else{ // stpf = stpq; // //stpf = stpc + (stpq - stpc)/2; // } // bracketed = true; // if (newPt[a] < 0.1){ // stpf = 0.01*stpf; // } // } else if (signG < 0.0){ // info = 2; // bound = false; // theta = 3*(bestPt[f] - newPt[f])/(newPt[a] - bestPt[a]) + bestPt[g] + // newPt[g]; // s = Math.max(Math.max(theta,bestPt[g]),newPt[g]); // gamma = s*Math.sqrt((theta/s)*(theta/s) - (bestPt[g]/s)*(newPt[g]/s)); // if (newPt[a] > bestPt[a]) { // gamma = -gamma; // } // p = (gamma - newPt[g]) + theta; // q = ((gamma - newPt[g]) + gamma) + bestPt[g]; // r = p/q; // stpc = newPt[a] + r*(bestPt[a] - newPt[a]); // stpq = newPt[a] + (newPt[g]/(newPt[g]-bestPt[g]))*(bestPt[a] - newPt[a]); // if (Math.abs(stpc-newPt[a]) > Math.abs(stpq-newPt[a])){ // stpf = stpc; // } else { // stpf = stpq; // } // bracketed = true; // } else if ( Math.abs(newPt[g]) < Math.abs(bestPt[g])){ // info = 3; // bound = true; // theta = 3*(bestPt[f] - newPt[f])/(newPt[a] - bestPt[a]) + bestPt[g] + // newPt[g]; // s = Math.max(Math.max(theta,bestPt[g]),newPt[g]); // gamma = s*Math.sqrt(Math.max(0.0,(theta/s)*(theta/s) - // (bestPt[g]/s)*(newPt[g]/s))); // if (newPt[a] < bestPt[a]){ // gamma = -gamma; // } // p = (gamma - bestPt[g]) + theta; // q = ((gamma-bestPt[g]) + gamma) + newPt[g]; // r = p/q; // if (r < 0.0 && gamma != 0.0){ // stpc = newPt[a] + r*(bestPt[a] - newPt[a]); // } else if (newPt[a] > bestPt[a]){ // stpc = aMax; // } else{ // stpc = aMin; // } // stpq = newPt[a] + (newPt[g]/(newPt[g]-bestPt[g]))*(bestPt[a] - newPt[a]); // if(bracketed){ // if (Math.abs(newPt[a]-stpc) < Math.abs(newPt[a]-stpq)){ // stpf = stpc; // } else { // stpf = stpq; // } // } else{ // if (Math.abs(newPt[a]-stpc) > Math.abs(newPt[a]-stpq)){ // stpf = stpc; // } else { // stpf = stpq; // } // } // }else{ // info = 4; // bound = false; // if (bracketed){ // theta = 3*(bestPt[f] - newPt[f])/(newPt[a] - bestPt[a]) + bestPt[g] + // newPt[g]; // s = Math.max(Math.max(theta,bestPt[g]),newPt[g]); // gamma = s*Math.sqrt((theta/s)*(theta/s) - (bestPt[g]/s)*(newPt[g]/s)); // if (newPt[a] > bestPt[a]) { // gamma = -gamma; // } // p = (gamma - newPt[g]) + theta; // q = ((gamma - newPt[g]) + gamma) + bestPt[g]; // r = p/q; // stpc = newPt[a] + r*(bestPt[a] - newPt[a]); // stpf = stpc; // }else if( newPt[a] > bestPt[a]){ // stpf = aMax; // } else { // stpf = aMin; // } // } // //Reduce the interval of uncertainty // if (newPt[f] > bestPt[f]) { // copy(newPt,endPt); // }else{ // if (signG < 0.0){ // copy(bestPt,endPt); // } // copy(newPt,bestPt); // } // say("" + info ); // newPt[a] = stpf; // if(bracketed && bound){ // if (endPt[a] > bestPt[a]){ // newPt[a] = Math.min(bestPt[a]+p66*(endPt[a]-bestPt[a]),newPt[a]); // }else{ // newPt[a] = Math.max(bestPt[a]+p66*(endPt[a]-bestPt[a]),newPt[a]); // } // } // } // //Check to see if the step has reached an extreme. // newPt[a] = Math.max(aMin, newPt[a]); // newPt[a] = Math.min(aMax,newPt[a]); // if( newPt[a] == aMin || newPt[a] == aMax){ // return newPt; // } // cnt +=1; // if(fevals > maxFevals){ // throw new MaxEvaluationsExceeded(" Exceeded during zoom() Function ");} // }while(true); // } // private double[] zoom2(DiffFunction dfunc, double[] x, double[] dir, // double[] newX, double f0, double g0, double[] bestPoint, double[] endPoint) // throws MaxEvaluationsExceeded { // // double[] newPoint = new double[3]; // double width = Math.abs(bestPoint[a] - endPoint[a]); // double reduction = 0.0; // // int cnt = 1; // // //make sure the interval reduces enough. // //if(reduction >= 0.66){ // //say(" |" + nf.format(reduction)+"| "); // //newPoint[a] = 0.5*(bestPoint[a]+endPoint[a]); // //} else{ // newPoint[a] = interpolate(bestPoint,endPoint);// quadratic interp // //} // // do{ // //Check to see if the step has reached an extreme. // newPoint[a] = Math.max(aMin, newPoint[a]); // newPoint[a] = Math.min(aMax,newPoint[a]); // // newPoint[f] = dfunc.valueAt((plusAndConstMult(x, dir, newPoint[a] , // newX))); // newPoint[g] = ArrayMath.innerProduct(dfunc.derivativeAt(newX),dir); // fevals += 1; // // //fNew > f0 + small*aNew*g0 or fNew > fLow // if( (newPoint[f] > f0 + ftol*newPoint[a]*g0) || newPoint[f] > bestPoint[f] // ){ // //Our new point didn't beat the best point, so just reduce the interval // copy(newPoint,endPoint); // say(".");//say("l"); // }else{ // // //if |gNew| <= 0.9999*|g0| If gNew is slightly smaller than g0 // if( Math.abs(newPoint[g]) <= -gtol*g0 ){ // //Sweet, we found a point that satisfies the strong wolfe conditions!!! // lets return it. // return newPoint; // } // // //If we made it this far, we've found a point that has satisfied descent, // but hasn't satsified // //the decrease in gradient. if the new gradient is telling us >0 we need to // look behind us // //if the new gradient is negative still we can increase the step. // if(newPoint[g]*(endPoint[a] - bestPoint[a] ) >= 0){ // //Get going the right way. // say(".");//say("f"); // copy(bestPoint,endPoint); // } // // if( (Math.abs(newPoint[a]-bestPoint[a]) < 1e-6) || // (Math.abs(newPoint[a]-endPoint[a]) < 1e-6) ){ // //Not moving fast enough. // sayln("had to improvise a bit"); // newPoint[a] = 0.5*(bestPoint[a] + endPoint[a]); // } // // say(".");//say("r"); // copy(newPoint,bestPoint); // } // // // if( newPoint[a] == aMin || newPoint[a] == aMax){ // return newPoint; // } // // reduction = Math.abs(bestPoint[a] - endPoint[a]) / width; // width = Math.abs(bestPoint[a] - endPoint[a]); // // cnt +=1; // // // //if(Math.abs(bestPoint[a] -endPoint[a]) < 1e-12 ){ // //sayln(); // //sayln("!!!!!!!!!!!!!!!!!!"); // //sayln("points are too close"); // //sayln("!!!!!!!!!!!!!!!!!!"); // //sayln("f0 " + nf.format(f0)); // //sayln("f0+crap " + nf.format(f0 + cVal*bestPoint[a]*g0)); // //sayln("g0 " + nf.format(g0)); // //sayln("ptLow"); // //printPt(bestPoint); // //sayln(); // //sayln("ptHigh"); // //printPt(endPoint); // //sayln(); // // //DiffFunctionTester.test(dfunc, x,1e-4); // //System.exit(1); // ////return dfunc.valueAt((plusAndConstMult(x, dir, aMin , newX))); // //} // // //if( (cnt > 20) ){ // // //sayln("!!!!!!!!!!!!!!!!!!"); // //sayln("! " + cnt + " iterations. I think we're out of luck"); // //sayln("!!!!!!!!!!!!!!!!!!"); // //sayln("f0" + nf.format(f0)); // //sayln("f0+crap" + nf.format(f0 + cVal*bestPoint[a]*g0)); // //sayln("g0 " + nf.format(g0)); // //sayln("bestPoint"); // //printPt(bestPoint); // //sayln(); // //sayln("ptHigh"); // //printPt(endPoint); // //sayln(); // // // // ////if( cnt > 25 || fevals > maxFevals){ // ////System.err.println("Max evaluations exceeded."); // ////System.exit(1); // ////return dfunc.valueAt((plusAndConstMult(x, dir, aMin , newX))); // ////} // //} // // if(fevals > maxFevals){ throw new MaxEvaluationsExceeded(" Exceeded during // zoom() Function ");} // // }while(true); // // } // // private double lineSearchNocedal(DiffFunction dfunc, double[] dir, double[] // x, double[] newX, double[] grad, double f0, int maxEvals){ // // boolean bracketed = false; // boolean stage1 = false; // double width = aMax - aMin; // double width1 = 2*width; // double stepMin = 0.0; // double stepMax = 0.0; // double xtrapf = 4.0; // int nFevals = 0; // double TOL = 1e-4; // double X_TOL = 1e-8; // int info = 0; // int infoc = 1; // // double g0 = ArrayMath.innerProduct(grad,dir); // if(g0 > 0){ // //We're looking in a direction of positive gradient. This wont' work. // //set dir = -grad // plusAndConstMult(new double[x.length],grad,-1,dir); // g0 = ArrayMath.innerProduct(grad,dir); // System.err.println("Searching in direction of positive gradient."); // } // say("(" + nf.format(g0) + ")"); // // // double[] newPt = new double[3]; // double[] bestPt = new double[3]; // double[] endPt = new double[3]; // // newPt[a] = 1.0; //Always guess 1 first, this should be right if the // function is "nice" and BFGS is working. // // if(its == 1){ // newPt[a] = 1e-6; // Guess low at first since we have no idea of scale. // } // // bestPt[a] = 0.0; // bestPt[f] = f0; // bestPt[g] = g0; // // endPt[a] = 0.0; // endPt[f] = f0; // endPt[g] = g0; // // int cnt = 0; // // do{ // //Determine the max and min step size given what we know already. // if(bracketed){ // stepMin = Math.min(bestPt[a], endPt[a]); // stepMax = Math.max(bestPt[a], endPt[a]); // } else{ // stepMin = bestPt[a]; // stepMax = newPt[a] + xtrapf*(newPt[a] - bestPt[a]); // } // // //Make sure our next guess is within the bounds // newPt[a] = Math.max(newPt[a], stepMin); // newPt[a] = Math.min(newPt[a], stepMax); // // if( (bracketed && (newPt[a] <= stepMin || newPt[a] >= stepMax) ) // || nFevals > maxEvals || (bracketed & (stepMax-stepMin) <= TOL*stepMax)){ // System.err.println("Linesearch for QN, Need to make srue that newX is set // before returning bestPt. -akleeman"); // System.exit(1); // return bestPt[f]; // } // // // newPt[f] = dfunc.valueAt((plusAndConstMult(x, dir, newPt[a], newX))); // newPt[g] = ArrayMath.innerProduct(dfunc.derivativeAt(newX),dir); // nFevals += 1; // // double fTest = f0 + newPt[a]*g0; // // System.err.println("fTest " + fTest + " new" + newPt[a] + " newf" + // newPt[f] + " newg" + newPt[g] ); // // if( ( bracketed && (newPt[a] <= stepMin | newPt[a] >= stepMax )) || infoc // == 0){ // info = 6; // } // // if( newPt[a] == stepMax && ( newPt[f] <= fTest || newPt[g] >= ftol*g0 )){ // info = 5; // } // // if( (newPt[a] == stepMin && ( newPt[f] > fTest || newPt[g] >= ftol*g0 ) )){ // info = 4; // } // // if( (nFevals >= maxEvals)){ // info = 3; // } // // if( bracketed && stepMax-stepMin <= X_TOL*stepMax){ // info = 2; // } // // if( (newPt[f] <= fTest) && (Math.abs(newPt[g]) <= - gtol*g0) ){ // info = 1; // } // // if(info != 0){ // return newPt[f]; // } // // if(stage1 && newPt[f]< fTest && newPt[g] >= ftol*g0){ // stage1 = false; // } // // // if( stage1 && f<= bestPt[f] && f > fTest){ // // double[] newPtMod = new double[3]; // double[] bestPtMod = new double[3]; // double[] endPtMod = new double[3]; // // newPtMod[f] = newPt[f] - newPt[a]*ftol*g0; // newPtMod[g] = newPt[g] - ftol*g0; // bestPtMod[f] = bestPt[f] - bestPt[a]*ftol*g0; // bestPtMod[g] = bestPt[g] - ftol*g0; // endPtMod[f] = endPt[f] - endPt[a]*ftol*g0; // endPtMod[g] = endPt[g] - ftol*g0; // // //this.cstep(newPtMod, bestPtMod, endPtMod, bracketed); // // bestPt[f] = bestPtMod[f] + bestPt[a]*ftol*g0; // bestPt[g] = bestPtMod[g] + ftol*g0; // endPt[f] = endPtMod[f] + endPt[a]*ftol*g0; // endPt[g] = endPtMod[g] + ftol*g0; // // }else{ // //this.cstep(newPt, bestPt, endPt, bracketed); // } // // double p66 = 0.66; // double p5 = 0.5; // // if(bracketed){ // if ( Math.abs(endPt[a] - bestPt[a]) >= p66*width1){ // newPt[a] = bestPt[a] + p5*(endPt[a]-bestPt[a]); // } // width1 = width; // width = Math.abs(endPt[a]-bestPt[a]); // } // // // // }while(true); // // } // // private double cstepBackup( double[] newPt, double[] bestPt, double[] // endPt, boolean bracketed ){ // // double p66 = 0.66; // int info = 0; // double stpf; // double theta,gamma,s,p,q,r,stpc,stpq; // boolean bound = false; // // double signG = newPt[g]*bestPt[g]/Math.abs(bestPt[g]); // // // //Our new point has a higher function value // if( newPt[f] > bestPt[f]){ // info = 1; // bound = true; // theta = 3*(bestPt[f] - newPt[f])/(newPt[a] - bestPt[a]) + bestPt[g] + // newPt[g]; // s = Math.max(Math.max(theta,newPt[g]), bestPt[g]); // gamma = s*Math.sqrt( (theta/s)*(theta/s) - (bestPt[g]/s)*(newPt[g]/s) ); // if (newPt[a] < bestPt[a]){ // gamma = -gamma; // } // p = (gamma - bestPt[g]) + theta; // q = ((gamma-bestPt[g]) + gamma) + newPt[g]; // r = p/q; // stpc = bestPt[a] + r*(newPt[a] - bestPt[a]); // stpq = bestPt[a] + // ((bestPt[g]/((bestPt[f]-newPt[f])/(newPt[a]-bestPt[a])+bestPt[g]))/2)*(newPt[a] // - bestPt[a]); // // if ( Math.abs(stpc-bestPt[a]) < Math.abs(stpq - bestPt[a] )){ // stpf = stpc; // } else{ // stpf = stpc + (stpq - stpc)/2; // } // bracketed = true; // // } else if (signG < 0.0){ // // info = 2; // bound = false; // theta = 3*(bestPt[f] - newPt[f])/(newPt[a] - bestPt[a]) + bestPt[g] + // newPt[g]; // s = Math.max(Math.max(theta,bestPt[g]),newPt[g]); // gamma = s*Math.sqrt((theta/s)*(theta/s) - (bestPt[g]/s)*(newPt[g]/s)); // if (newPt[a] > bestPt[a]) { // gamma = -gamma; // } // p = (gamma - newPt[g]) + theta; // q = ((gamma - newPt[g]) + gamma) + bestPt[g]; // r = p/q; // stpc = newPt[a] + r*(bestPt[a] - newPt[a]); // stpq = newPt[a] + (newPt[g]/(newPt[g]-bestPt[g]))*(bestPt[a] - newPt[a]); // if (Math.abs(stpc-newPt[a]) > Math.abs(stpq-newPt[a])){ // stpf = stpc; // } else { // stpf = stpq; // } // bracketed = true; // } else if ( Math.abs(newPt[g]) < Math.abs(bestPt[g])){ // info = 3; // bound = true; // theta = 3*(bestPt[f] - newPt[f])/(newPt[a] - bestPt[a]) + bestPt[g] + // newPt[g]; // s = Math.max(Math.max(theta,bestPt[g]),newPt[g]); // gamma = s*Math.sqrt(Math.max(0.0,(theta/s)*(theta/s) - // (bestPt[g]/s)*(newPt[g]/s))); // if (newPt[a] < bestPt[a]){ // gamma = -gamma; // } // p = (gamma - bestPt[g]) + theta; // q = ((gamma-bestPt[g]) + gamma) + newPt[g]; // r = p/q; // if (r < 0.0 && gamma != 0.0){ // stpc = newPt[a] + r*(bestPt[a] - newPt[a]); // } else if (newPt[a] > bestPt[a]){ // stpc = aMax; // } else{ // stpc = aMin; // } // stpq = newPt[a] + (newPt[g]/(newPt[g]-bestPt[g]))*(bestPt[a] - newPt[a]); // if (bracketed){ // if (Math.abs(newPt[a]-stpc) < Math.abs(newPt[a]-stpq)){ // stpf = stpc; // } else { // stpf = stpq; // } // } else { // if (Math.abs(newPt[a]-stpc) > Math.abs(newPt[a]-stpq)){ // System.err.println("modified to take only quad"); // stpf = stpq; // }else{ // stpf = stpq; // } // } // // // }else{ // info = 4; // bound = false; // // if(bracketed){ // theta = 3*(bestPt[f] - newPt[f])/(newPt[a] - bestPt[a]) + bestPt[g] + // newPt[g]; // s = Math.max(Math.max(theta,bestPt[g]),newPt[g]); // gamma = s*Math.sqrt((theta/s)*(theta/s) - (bestPt[g]/s)*(newPt[g]/s)); // if (newPt[a] > bestPt[a]) { // gamma = -gamma; // } // p = (gamma - newPt[g]) + theta; // q = ((gamma - newPt[g]) + gamma) + bestPt[g]; // r = p/q; // stpc = newPt[a] + r*(bestPt[a] - newPt[a]); // stpf = stpc; // }else if (newPt[a] > bestPt[a]){ // stpf = aMax; // }else{ // stpf = aMin; // } // // } // // // if (newPt[f] > bestPt[f]) { // copy(newPt,endPt); // }else{ // if (signG < 0.0){ // copy(bestPt,endPt); // } // copy(newPt,bestPt); // } // // stpf = Math.min(aMax,stpf); // stpf = Math.max(aMin,stpf); // newPt[a] = stpf; // if (bracketed & bound){ // if (endPt[a] > bestPt[a]){ // newPt[a] = Math.min(bestPt[a]+p66*(endPt[a]-bestPt[a]),newPt[a]); // }else{ // newPt[a] = Math.max(bestPt[a]+p66*(endPt[a]-bestPt[a]),newPt[a]); // } // } // // //newPt[f] = // System.err.println("cstep " + nf.format(newPt[a]) + " info " + info); // return newPt[a]; // // } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy