All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.stanford.nlp.trees.tregex.TregexPattern Maven / Gradle / Ivy

Go to download

Stanford Parser processes raw text in English, Chinese, German, Arabic, and French, and extracts constituency parse trees.

There is a newer version: 3.9.2
Show newest version
// TregexPattern -- a Tgrep2-style utility for recognizing patterns in trees.
// Tregex/Tsurgeon Distribution
// Copyright (c) 2003-2008 The Board of Trustees of
// The Leland Stanford Junior University. All Rights Reserved.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
//
//
// For more information, bug reports, fixes, contact:
//    Christopher Manning
//    Dept of Computer Science, Gates 1A
//    Stanford CA 94305-9010
//    USA
//    Support/Questions: [email protected]
//    Licensing: [email protected]
//    http://www-nlp.stanford.edu/software/tregex.shtml


package edu.stanford.nlp.trees.tregex;

import java.io.*;
import java.util.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import edu.stanford.nlp.io.ExtensionFileFilter;
import edu.stanford.nlp.io.IOUtils;
import edu.stanford.nlp.ling.StringLabelFactory;
import edu.stanford.nlp.trees.*;
import edu.stanford.nlp.util.ArrayMap;
import edu.stanford.nlp.util.Generics;
import edu.stanford.nlp.util.Pair;
import edu.stanford.nlp.util.StringUtils;
import edu.stanford.nlp.util.Timing;


/**
 * A TregexPattern is a tgrep-type pattern for matching tree
 * node configurations.  Unlike tgrep or tgrep2but like Unix
 * grep, there is no pre-indexing of the data to be searched.
 * Rather there is a linear scan through the trees where matches are sought.
 * As a result, matching is slower, but a TregexPattern can be applied
 * to an arbitrary set of trees at runtime in a processing pipeline.
 *
 * 

TregexPattern instances can be matched against instances of the {@link Tree} class. * The {@link #main} method can be used to find matching nodes of a treebank from the command line. * *

* Currently supported node-node relations and their symbols: *

*

*
SymbolMeaning *
A << B A dominates B *
A >> B A is dominated by B *
A < B A immediately dominates B *
A > B A is immediately dominated by B *
A $ B A is a sister of B (and not equal to B) *
A .. B A precedes B *
A . B A immediately precedes B *
A ,, B A follows B *
A , B A immediately follows B *
A <<, B B is a leftmost descendant of A *
A <<- B B is a rightmost descendant of A *
A >>, B A is a leftmost descendant of B *
A >>- B A is a rightmost descendant of B *
A <, B B is the first child of A *
A >, B A is the first child of B *
A <- B B is the last child of A *
A >- B A is the last child of B *
A <` B B is the last child of A *
A >` B A is the last child of B *
A <i B B is the ith child of A (i > 0) *
A >i B A is the ith child of B (i > 0) *
A <-i B B is the ith-to-last child of A (i > 0) *
A >-i B A is the ith-to-last child of B (i > 0) *
A <: B B is the only child of A *
A >: B A is the only child of B *
A <<: B A dominates B via an unbroken chain (length > 0) of unary local trees. *
A >>: B A is dominated by B via an unbroken chain (length > 0) of unary local trees. *
A $++ B A is a left sister of B (same as $.. for context-free trees) *
A $-- B A is a right sister of B (same as $,, for context-free trees) *
A $+ B A is the immediate left sister of B (same as $. for context-free trees) *
A $- B A is the immediate right sister of B (same as $, for context-free trees) *
A $.. B A is a sister of B and precedes B *
A $,, B A is a sister of B and follows B *
A $. B A is a sister of B and immediately precedes B *
A $, B A is a sister of B and immediately follows B *
A <+(C) B A dominates B via an unbroken chain of (zero or more) nodes matching description C *
A >+(C) B A is dominated by B via an unbroken chain of (zero or more) nodes matching description C *
A .+(C) B A precedes B via an unbroken chain of (zero or more) nodes matching description C *
A ,+(C) B A follows B via an unbroken chain of (zero or more) nodes matching description C *
A <<# B B is a head of phrase A *
A >># B A is a head of phrase B *
A <# B B is the immediate head of phrase A *
A ># B A is the immediate head of phrase B *
A == B A and B are the same node *
A <= B A and B are the same node or A is the parent of B *
A : B[this is a pattern-segmenting operator that places no constraints on the relationship between A and B] *
A <... { B ; C ; ... }A has exactly B, C, etc as its subtree, with no other children. *
*

Label descriptions can be literal strings, which much match labels * exactly, or regular expressions in regular expression bars: /regex/. * Literal string matching proceeds as String equality. * In order to prevent ambiguity with other Tregex symbols, ASCII symbols are * not allowed in literal strings, and they cannot begin with ASCII digits. * (That is literals can be standard "identifiers" matching * [a-zA-Z]([a-zA-Z0-9_-])* but also may include letters from other alphabets.) * If you want to use other symbols, you can do so by using a regular * expression instead of a literal string. * A disjunctive list of literal strings can be given separated by '|'. * The special string '__' (two underscores) can be used to match any * node. (WARNING!! Use of the '__' node description may seriously * slow down search.) If a label description is preceded by '@', the * label will match any node whose basicCategory matches the * description. NB: A single '@' thus scopes over a disjunction * specified by '|': @NP|VP means things with basic category NP or VP. * The basicCategory is defined according to a Function * mapping Strings to Strings, as provided by * {@link edu.stanford.nlp.trees.AbstractTreebankLanguagePack#getBasicCategoryFunction()}. * Label description regular expressions are matched as find(), * as in Perl/tgrep; * you need to use ^ or $ to constrain matches to * the ends of strings. *

* In a chain of relations, all relations are relative to the first node in * the chain. For example, (S < VP < NP) means * "an S over a VP and also over an NP". * If instead what you want is an S above a VP above an NP, you should write * "S < (VP < NP)". *

Nodes can be grouped using parentheses '(' and ')' * as in S < (NP $++ VP) to match an S * over an NP, where the NP has a VP as a right sister. * *

Notes on relations

* *

* Node B "follows" node A if B * or one of its ancestors is a right sibling of A or one * of its ancestors. Node B "immediately follows" node * A if B follows A and there * is no node C such that B follows * C and C follows A. * *

* Node A dominates B through an unbroken * chain of unary local trees only if A is also * unary. (A (B)) is a valid example that matches A * <<: B * *

* When specifying that nodes are dominated via an unbroken chain of * nodes matching a description C, the description * C cannot be a full Tregex expression, but only an * expression specifying the name of the node. Negation of this * description is allowed. * *

* == has the same precedence as the other relations, so the expression * A << B == A << C associates as * (((A << B) == A) << C), not as * ((A << B) == (A << C)). (Both expressions are * equivalent, of course, but this is just an example.) * *

Boolean relational operators

* *

Relations can be combined using the '&' and '|' operators, * negated with the '!' operator, and made optional with the '?' operator. * Thus (NP < NN | < NNS) will match an NP node dominating either * an NN or an NNS. (NP > S & $++ VP) matches an NP that * is both under an S and has a VP as a right sister. *

* Expressions stop evaluating as soon as the result is known. For * example, if the pattern is NP=a | NNP=b and the NP * matches, then variable b will not be assigned even if * there is an NNP in the tree. * *

Relations can be grouped using brackets '[' and ']'. So the * expression * *

* NP [< NN | < NNS] & > S *
* * matches an NP that (1) dominates either an NN or an NNS, and (2) is under an S. Without * brackets, & takes precedence over |, and equivalent operators are * left-associative. Also note that & is the default combining operator if the * operator is omitted in a chain of relations, so that the two patterns are equivalent: * *
* (S < VP < NP)
* (S < VP & < NP) *
* * As another example, (VP < VV | < NP % NP) * can be written explicitly as (VP [< VV | [< NP & % NP] ] ) * * *

Relations can be negated with the '!' operator, in which case the * expression will match only if there is no node satisfying the relation. * For example (NP !< NNP) matches only NPs not dominating * an NNP. Label descriptions can also be negated with '!': (NP < !NNP|NNS) matches * NPs dominating some node that is not an NNP or an NNS. *

Relations can be made optional with the '?' operator. This way the * expression will match even if the optional relation is not satisfied. This is useful when used together * with node naming (see below). * *

Basic Categories

* *

In order to consider only the "basic category" of a tree label, * i.e. to ignore functional tags or other annotations on the label, * prefix that node's description with the @ symbol. For example * (@NP < @/NN.?/) This can only be used for individual nodes; * if you want all nodes to use the basic category, it would be more efficient * to use a {@link edu.stanford.nlp.trees.TreeNormalizer} to remove functional * tags before passing the tree to the TregexPattern. * *

Segmenting patterns

* *

The ":" operator allows you to segment a pattern into two pieces. This can simplify your pattern writing. For example, * the pattern * *

* S : NP *
* * matches only those S nodes in trees that also have an NP node. * *

Naming nodes

* *

Nodes can be given names (a.k.a. handles) using '='. A named node will be stored in a * map that maps names to nodes so that if a match is found, the node * corresponding to the named node can be extracted from the map. For * example (NP < NNP=name) will match an NP dominating an NNP * and after a match is found, the map can be queried with the * name to retreived the matched node using {@link TregexMatcher#getNode(String o)} * with (String) argument "name" (not "=name"). * Note that you are not allowed to name a node that is under the scope of a negation operator (the semantics would * be unclear, since you can't store a node that never gets matched to). * Trying to do so will cause a {@link TregexParseException} to be thrown. Named nodes can be put within the scope of an optionality operator. * *

Named nodes that refer back to previous named nodes need not have a node * description -- this is known as "backreferencing". In this case, the expression * will match only when all instances of the same name get matched to the same tree node. * For example: the pattern * *

* (@NP <, (@NP $+ (/,/ $+ (@NP $+ /,/=comma))) <- =comma) *
* * matches only an NP dominating exactly the four node sequence * NP , NP , -- the mother NP cannot have any other * daughters. Multiple backreferences are allowed. If the node w/ no * node description does not refer to a previously named node, there * will be no error, the expression simply will not match anything. * *

Another way to refer to previously named nodes is with the "link" symbol: '~'. * A link is like a backreference, except that instead of having to be equal to the * referred node, the current node only has to match the label of the referred to node. * A link cannot have a node description, i.e. the '~' symbol must immediately follow a * relation symbol. * *

Customizing headship and basic categories

* *

The HeadFinder used to determine heads for the head relations <#, >#, <<#, and >>#, and also * the Function mapping from labels to Basic Category tags can be * chosen by using a {@link TregexPatternCompiler}. * *

Variable Groups

* *

If you write a node description using a regular expression, you can assign its matching groups to variable names. * If more than one node has a group assigned to the same variable name, then matching will only occur when all such groups * capture the same string. This is useful for enforcing coindexation constraints. The syntax is * *

* / <regex-stuff> /#<group-number>%<variable-name> *
* * For example, the pattern (designed for Penn Treebank trees) * *
* @SBAR < /^WH.*-([0-9]+)$/#1%index << (__=empty < (/^-NONE-/ < /^\*T\*-([0-9]+)$/#1%index)) *
* * will match only such that the WH- node under the SBAR is coindexed with the trace node that gets the name empty. * *

Getting Started

* * Suppose we want to find all examples of subtrees where the label of * the root of the subtree starts with MW. For example, we want any * subtree whose root is labeled MWV, MWN, etc. *
* The first thing to do is figure out what pattern to use. Since we * want to match anything starting with MW, we use the pattern * /^MW/. *
* We then create a pattern, find matches in a given tree, and process * those matches as follows: *
* * // Create a reusable pattern object
* TregexPattern patternMW = TregexPattern.compile("/^MW/");
* // Run the pattern on one particular tree
* TregexMatcher matcher = patternMW.matcher(tree);
* // Iterate over all of the subtrees that matched
* while (matcher.findNextMatchingNode()) {
*   Tree match = matcher.getMatch();
*   // do what we want to with the subtree
* } *
*
* *

Current known bugs/shortcomings:

* *
    * *
  • Tregex does not support disjunctions at the root level. For * example, the pattern A | B will not work. * *
  • Using multiple variable strings in one regex may not * necessarily work. For example, suppose the first two regex * patterns are /(.*)/#1%foo and * /(.*)/#1%bar. You might then want to write a pattern * that matches the concatenation of these patterns, * /(.*)(.*)/#1%foo#2%bar, but that will not work. * *
* * @author Galen Andrew * @author Roger Levy ([email protected]) * @author Anna Rafferty (filter mode) * @author John Bauer (extensively tested and bugfixed) */ public abstract class TregexPattern implements Serializable { private boolean neg = false; private boolean opt = false; private String patternString; void negate() { neg = true; if (opt) { throw new RuntimeException("Node cannot be both negated and optional."); } } void makeOptional() { opt = true; if (neg) { throw new RuntimeException("Node cannot be both negated and optional."); } } private void prettyPrint(PrintWriter pw, int indent) { for (int i = 0; i < indent; i++) { pw.print(" "); } if (neg) { pw.print('!'); } if (opt) { pw.print('?'); } pw.println(localString()); for (TregexPattern child : getChildren()) { child.prettyPrint(pw, indent + 1); } } // package private constructor TregexPattern() { } abstract List getChildren(); abstract String localString(); boolean isNegated() { return neg; } boolean isOptional() { return opt; } abstract TregexMatcher matcher(Tree root, Tree tree, IdentityHashMap nodesToParents, Map namesToNodes, VariableStrings variableStrings, HeadFinder headFinder); /** * Get a {@link TregexMatcher} for this pattern on this tree. * * @param t a tree to match on * @return a TregexMatcher */ public TregexMatcher matcher(Tree t) { // In the assumption that there will usually be very few names in // the pattern, we use an ArrayMap instead of a hash map // TODO: it would be even more efficient if we set this to be // exactly the right size return matcher(t, t, null, ArrayMap.newArrayMap(), new VariableStrings(), null); } /** * Get a {@link TregexMatcher} for this pattern on this tree. Any Relations which use heads of trees should use the provided HeadFinder. * * @param t a tree to match on * @param headFinder a HeadFinder to use when matching * @return a TregexMatcher */ public TregexMatcher matcher(Tree t, HeadFinder headFinder) { return matcher(t, t, null, ArrayMap.newArrayMap(), new VariableStrings(), headFinder); } /** * Creates a pattern from the given string using the default HeadFinder and * BasicCategoryFunction. If you want to use a different HeadFinder or * BasicCategoryFunction, use a {@link TregexPatternCompiler} object. * * @param tregex the pattern string * @return a TregexPattern for the string. * @throws TregexParseException if the string does not parse */ public static TregexPattern compile(String tregex) { return TregexPatternCompiler.defaultCompiler.compile(tregex); } /** * Creates a pattern from the given string using the default HeadFinder and * BasicCategoryFunction. If you want to use a different HeadFinder or * BasicCategoryFunction, use a {@link TregexPatternCompiler} object. * Rather than throwing an exception when the string does not parse, * simply returns null. * * @param tregex the pattern string * @param verbose whether to log errors when the string doesn't parse * @return a TregexPattern for the string, or null if the string does not parse. */ public static TregexPattern safeCompile(String tregex, boolean verbose) { TregexPattern result = null; try { result = TregexPatternCompiler.defaultCompiler.compile(tregex); } catch (TregexParseException ex) { if (verbose) { System.err.println("Could not parse " + tregex + ":"); ex.printStackTrace(); } } return result; } public String pattern() { return patternString; } /** Only used by the TregexPatternCompiler to set the pattern. Pseudo-final. */ void setPatternString(String patternString) { this.patternString = patternString; } /** * @return A single-line string representation of the pattern */ @Override public abstract String toString(); /** * Print a multi-line representation * of the pattern illustrating it's syntax. */ public void prettyPrint(PrintWriter pw) { prettyPrint(pw, 0); } /** * Print a multi-line representation * of the pattern illustrating it's syntax. */ public void prettyPrint(PrintStream ps) { prettyPrint(new PrintWriter(new OutputStreamWriter(ps), true)); } /** * Print a multi-line representation of the pattern illustrating * it's syntax to System.out. */ public void prettyPrint() { prettyPrint(System.out); } private static final Pattern codePattern = Pattern.compile("([0-9]+):([0-9]+)"); private static void extractSubtrees(List codeStrings, String treeFile) { List> codes = new ArrayList>(); for(String s : codeStrings) { Matcher m = codePattern.matcher(s); if(m.matches()) codes.add(new Pair(Integer.parseInt(m.group(1)),Integer.parseInt(m.group(2)))); else throw new RuntimeException("Error: illegal node code " + s); } TreeReaderFactory trf = new TRegexTreeReaderFactory(); MemoryTreebank treebank = new MemoryTreebank(trf); treebank.loadPath(treeFile,null, true); for (Pair code : codes) { Tree t = treebank.get(code.first()-1); t.getNodeNumber(code.second()).pennPrint(); } } /** * Prints out all matches of a tree pattern on each tree in the path. * Usage:

* java edu.stanford.nlp.trees.tregex.TregexPattern [[-TCwfosnu] [-filter] [-h <node-name>]]* pattern * filepath * *

* Arguments:
*

  • pattern: the tree * pattern which optionally names some set of nodes (i.e., gives it the "handle") =name (for some arbitrary * string "name") *
  • filepath: the path to files with trees. If this is a directory, there will be recursive descent and the pattern will be run on all files beneath the specified directory. *

* Options:
*

  • -C suppresses printing of matches, so only the * number of matches is printed. *
  • -w causes the whole of a tree that matches to be printed. *
  • -f causes the filename to be printed. *
  • -i <filename> causes the pattern to be matched to be read from <filename> rather than the command line. Don't specify a pattern when this option is used. *
  • -o Specifies that each tree node can be reported only once as the root of a match (by default a node will * be printed once for every way the pattern matches). *
  • -s causes trees to be printed all on one line (by default they are pretty printed). *
  • -n causes the number of the tree in which the match was found to be * printed before every match. *
  • -u causes only the label of each matching node to be printed, not complete subtrees. *
  • -t causes only the yield (terminal words) of the selected node to be printed (or the yield of the whole tree, if the -w option is used). *
  • -encoding <charset_encoding> option allows specification of character encoding of trees.. *
  • -h <node-handle> If a -h option is given, the root tree node will not be printed. Instead, * for each node-handle specified, the node matched and given that handle will be printed. Multiple nodes can be printed by using the * -h option multiple times on a single command line. *
  • -hf <headfinder-class-name> use the specified {@link HeadFinder} class to determine headship relations. *
  • -hfArg <string> pass a string argument in to the {@link HeadFinder} class's constructor. -hfArg can be used multiple times to pass in multiple arguments. *
  • -trf <TreeReaderFactory-class-name> use the specified {@link TreeReaderFactory} class to read trees from files. *
  • -e <extension> Only attempt to read files with the given extension. If not provided, will attempt to read all files.
  • *
  • -v print every tree that contains no matches of the specified pattern, but print no matches to the pattern. * *
  • -x Instead of the matched subtree, print the matched subtree's identifying number as defined in tgrep2:a * unique identifier for the subtree and is in the form s:n, where s is an integer specifying * the sentence number in the corpus (starting with 1), and n is an integer giving the order * in which the node is encountered in a depth-first search starting with 1 at top node in the * sentence tree. * *
  • -extract <code> <tree-file> extracts the subtree s:n specified by code from the specified tree-file. Overrides all other behavior of tregex. Can't specify multiple encodings etc. yet. *
  • -extractFile <code-file> <tree-file> extracts every subtree specified by the subtree codes in code-file, which must appear exactly one per line, from the specified tree-file. Overrides all other behavior of tregex. Can't specify multiple encodings etc. yet. *
  • -filter causes this to act as a filter, reading tree input from stdin *
  • -T causes all trees to be printed as processed (for debugging purposes). Otherwise only matching nodes are printed. *
  • -macros <filename> filename with macro substitutions to use. file with tab separated lines original-tab-replacement * * */ public static void main(String[] args) throws IOException { Timing.startTime(); StringBuilder treePrintFormats = new StringBuilder(); String printNonMatchingTreesOption = "-v"; String subtreeCodeOption = "-x"; String extractSubtreesOption = "-extract"; String extractSubtreesFileOption = "-extractFile"; String inputFileOption = "-i"; String headFinderOption = "-hf"; String headFinderArgOption = "-hfArg"; String trfOption = "-trf"; String extensionOption = "-e"; String extension = null; String headFinderClassName = null; String[] headFinderArgs = StringUtils.EMPTY_STRING_ARRAY; String treeReaderFactoryClassName = null; String printHandleOption = "-h"; String markHandleOption = "-k"; String encodingOption = "-encoding"; String encoding = "UTF-8"; String macroOption = "-macros"; String macroFilename = ""; String yieldOnly = "-t"; String printAllTrees = "-T"; String quietMode = "-C"; String wholeTreeMode = "-w"; String filenameOption = "-f"; String oneMatchPerRootNodeMode = "-o"; String reportTreeNumbers = "-n"; String rootLabelOnly = "-u"; String oneLine = "-s"; Map flagMap = Generics.newHashMap(); flagMap.put(extractSubtreesOption,2); flagMap.put(extractSubtreesFileOption,2); flagMap.put(subtreeCodeOption,0); flagMap.put(printNonMatchingTreesOption,0); flagMap.put(encodingOption,1); flagMap.put(inputFileOption,1); flagMap.put(printHandleOption,1); flagMap.put(markHandleOption,2); flagMap.put(headFinderOption,1); flagMap.put(headFinderArgOption,1); flagMap.put(trfOption,1); flagMap.put(extensionOption, 1); flagMap.put(macroOption, 1); flagMap.put(yieldOnly, 0); flagMap.put(quietMode, 0); flagMap.put(wholeTreeMode, 0); flagMap.put(printAllTrees, 0); flagMap.put(filenameOption, 0); flagMap.put(oneMatchPerRootNodeMode, 0); flagMap.put(reportTreeNumbers, 0); flagMap.put(rootLabelOnly, 0); flagMap.put(oneLine, 0); Map argsMap = StringUtils.argsToMap(args, flagMap); args = argsMap.get(null); if (argsMap.containsKey(encodingOption)) { encoding = argsMap.get(encodingOption)[0]; System.err.println("Encoding set to " + encoding); } PrintWriter errPW = new PrintWriter(new OutputStreamWriter(System.err, encoding), true); if (argsMap.containsKey(extractSubtreesOption)) { List subTreeStrings = Collections.singletonList(argsMap.get(extractSubtreesOption)[0]); extractSubtrees(subTreeStrings,argsMap.get(extractSubtreesOption)[1]); return; } if (argsMap.containsKey(extractSubtreesFileOption)) { List subTreeStrings = Arrays.asList(IOUtils.slurpFile(argsMap.get(extractSubtreesFileOption)[0]).split("\n|\r|\n\r")); extractSubtrees(subTreeStrings,argsMap.get(extractSubtreesFileOption)[0]); return; } if (args.length < 1) { errPW.println("Usage: java edu.stanford.nlp.trees.tregex.TregexPattern [-T] [-C] [-w] [-f] [-o] [-n] [-s] [-filter] [-hf class] [-trf class] [-h handle]* [-e ext] pattern [filepath]"); return; } String matchString = args[0]; if (argsMap.containsKey(macroOption)) { macroFilename = argsMap.get(macroOption)[0]; } if (argsMap.containsKey(headFinderOption)) { headFinderClassName = argsMap.get(headFinderOption)[0]; errPW.println("Using head finder " + headFinderClassName + "..."); } if(argsMap.containsKey(headFinderArgOption)) { headFinderArgs = argsMap.get(headFinderArgOption); } if (argsMap.containsKey(trfOption)) { treeReaderFactoryClassName = argsMap.get(trfOption)[0]; errPW.println("Using tree reader factory " + treeReaderFactoryClassName + "..."); } if (argsMap.containsKey(extensionOption)) { extension = argsMap.get(extensionOption)[0]; } if (argsMap.containsKey(printAllTrees)) { TRegexTreeVisitor.printTree = true; } if (argsMap.containsKey(inputFileOption)) { String inputFile = argsMap.get(inputFileOption)[0]; matchString = IOUtils.slurpFile(inputFile, encoding); String[] newArgs = new String[args.length+1]; System.arraycopy(args,0,newArgs,1,args.length); args = newArgs; } if (argsMap.containsKey(quietMode)) { TRegexTreeVisitor.printMatches = false; TRegexTreeVisitor.printNumMatchesToStdOut = true ; } if (argsMap.containsKey(printNonMatchingTreesOption)) { TRegexTreeVisitor.printNonMatchingTrees = true; } if (argsMap.containsKey(subtreeCodeOption)) { TRegexTreeVisitor.printSubtreeCode = true; TRegexTreeVisitor.printMatches = false; } if (argsMap.containsKey(wholeTreeMode)) { TRegexTreeVisitor.printWholeTree = true; } if (argsMap.containsKey(filenameOption)) { TRegexTreeVisitor.printFilename = true; } if(argsMap.containsKey(oneMatchPerRootNodeMode)) TRegexTreeVisitor.oneMatchPerRootNode = true; if(argsMap.containsKey(reportTreeNumbers)) TRegexTreeVisitor.reportTreeNumbers = true; if (argsMap.containsKey(rootLabelOnly)) { treePrintFormats.append(TreePrint.rootLabelOnlyFormat).append(','); } else if (argsMap.containsKey(oneLine)) { // display short form treePrintFormats.append("oneline,"); } else if (argsMap.containsKey(yieldOnly)) { treePrintFormats.append("words,"); } else { treePrintFormats.append("penn,"); } HeadFinder hf = new CollinsHeadFinder(); if(headFinderClassName != null) { Class[] hfArgClasses = new Class[headFinderArgs.length]; for(int i = 0; i < hfArgClasses.length; i++) hfArgClasses[i] = String.class; try { hf = (HeadFinder) Class.forName(headFinderClassName).getConstructor(hfArgClasses).newInstance((Object[]) headFinderArgs); // cast to Object[] necessary to avoid varargs-related warning. } catch(Exception e) { throw new RuntimeException("Error occurred while constructing HeadFinder: " + e); } } TRegexTreeVisitor.tp = new TreePrint(treePrintFormats.toString(), new PennTreebankLanguagePack()); try { //TreePattern p = TreePattern.compile("/^S/ > S=dt $++ '' $-- ``"); TregexPatternCompiler tpc = new TregexPatternCompiler(hf); Macros.addAllMacros(tpc, macroFilename, encoding); TregexPattern p = tpc.compile(matchString); errPW.println("Pattern string:\n" + p.pattern()); errPW.println("Parsed representation:"); p.prettyPrint(errPW); String[] handles = argsMap.get(printHandleOption); if (argsMap.containsKey("-filter")) { TreeReaderFactory trf = getTreeReaderFactory(treeReaderFactoryClassName); treebank = new MemoryTreebank(trf, encoding);//has to be in memory since we're not storing it on disk //read from stdin Reader reader = new BufferedReader(new InputStreamReader(System.in, encoding)); ((MemoryTreebank) treebank).load(reader); reader.close(); } else if (args.length == 1) { errPW.println("using default tree"); TreeReader r = new PennTreeReader(new StringReader("(VP (VP (VBZ Try) (NP (NP (DT this) (NN wine)) (CC and) (NP (DT these) (NNS snails)))) (PUNCT .))"), new LabeledScoredTreeFactory(new StringLabelFactory())); Tree t = r.readTree(); treebank = new MemoryTreebank(); treebank.add(t); } else { int last = args.length - 1; errPW.println("Reading trees from file(s) " + args[last]); TreeReaderFactory trf = getTreeReaderFactory(treeReaderFactoryClassName); treebank = new DiskTreebank(trf, encoding); treebank.loadPath(args[last], extension, true); } TRegexTreeVisitor vis = new TRegexTreeVisitor(p, handles, encoding); treebank.apply(vis); Timing.endTime(); if (TRegexTreeVisitor.printMatches) { errPW.println("There were " + vis.numMatches() + " matches in total."); } if (TRegexTreeVisitor.printNumMatchesToStdOut) { System.out.println(vis.numMatches()); } } catch (IOException e) { e.printStackTrace(); } catch (TregexParseException e) { errPW.println("Error parsing expression: " + args[0]); errPW.println("Parse exception: " + e.toString()); } } private static TreeReaderFactory getTreeReaderFactory(String treeReaderFactoryClassName) { TreeReaderFactory trf = new TRegexTreeReaderFactory(); if (treeReaderFactoryClassName != null) { try { trf = (TreeReaderFactory) Class.forName(treeReaderFactoryClassName).newInstance(); } catch(Exception e) { throw new RuntimeException("Error occurred while constructing TreeReaderFactory: " + e); } } return trf; } private static Treebank treebank; // used by main method, must be accessible // not thread-safe, but only used by TregexPattern's main method private static class TRegexTreeVisitor implements TreeVisitor { private static boolean printNumMatchesToStdOut = false; static boolean printNonMatchingTrees = false; static boolean printSubtreeCode = false; static boolean printTree = false; static boolean printWholeTree = false; static boolean printMatches = true; static boolean printFilename = false; static boolean oneMatchPerRootNode = false; static boolean reportTreeNumbers = false; static TreePrint tp; private PrintWriter pw; int treeNumber = 0; private final TregexPattern p; String[] handles; int numMatches; TRegexTreeVisitor(TregexPattern p, String[] handles, String encoding) { this.p = p; this.handles = handles; try { pw = new PrintWriter(new OutputStreamWriter(System.out, encoding),true); } catch (UnsupportedEncodingException e) { System.err.println("Error -- encoding " + encoding + " is unsupported. Using platform default PrintWriter instead."); pw = new PrintWriter(System.out,true); } } // todo: add an option to only print each tree once, regardless. Most useful in conjunction with -w public void visitTree(Tree t) { treeNumber++; if (printTree) { pw.print(treeNumber+":"); pw.println("Next tree read:"); tp.printTree(t,pw); } TregexMatcher match = p.matcher(t); if(printNonMatchingTrees) { if(match.find()) numMatches++; else tp.printTree(t,pw); return; } Tree lastMatchingRootNode = null; while (match.find()) { if(oneMatchPerRootNode) { if(lastMatchingRootNode == match.getMatch()) continue; else lastMatchingRootNode = match.getMatch(); } numMatches++; if (printFilename && treebank instanceof DiskTreebank) { DiskTreebank dtb = (DiskTreebank) treebank; pw.print("# "); pw.println(dtb.getCurrentFilename()); } if(printSubtreeCode) { pw.print(treeNumber); pw.print(':'); pw.println(match.getMatch().nodeNumber(t)); } if (printMatches) { if(reportTreeNumbers) { pw.print(treeNumber); pw.print(": "); } if (printTree) { pw.println("Found a full match:"); } if (printWholeTree) { tp.printTree(t,pw); } else if (handles != null) { if (printTree) { pw.println("Here's the node you were interested in:"); } for (String handle : handles) { Tree labeledNode = match.getNode(handle); if (labeledNode == null) { System.err.println("Error!! There is no matched node \"" + handle + "\"! Did you specify such a label in the pattern?"); } else { tp.printTree(labeledNode,pw); } } } else { tp.printTree(match.getMatch(),pw); } // pw.println(); // TreePrint already puts a blank line in } // end if (printMatches) } // end while match.find() } // end visitTree public int numMatches() { return numMatches; } } // end class TRegexTreeVisitor private static final long serialVersionUID = 5060298043763944913L; public static class TRegexTreeReaderFactory implements TreeReaderFactory { private final TreeNormalizer tn; public TRegexTreeReaderFactory() { this(new TreeNormalizer() { /** * */ private static final long serialVersionUID = -2998972954089638189L; @Override public String normalizeNonterminal(String str) { if (str == null) { return ""; } else { return str; } } }); } public TRegexTreeReaderFactory(TreeNormalizer tn) { this.tn = tn; } public TreeReader newTreeReader(Reader in) { return new PennTreeReader(new BufferedReader(in), new LabeledScoredTreeFactory(), tn); } } // end class TRegexTreeReaderFactory }




  • © 2015 - 2024 Weber Informatics LLC | Privacy Policy