All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.stanford.nlp.maxent.Experiments Maven / Gradle / Ivy

/**
 * Title:        StanfordMaxEnt

* Description: A Maximum Entropy Toolkit

* Copyright: Copyright (c) Kristina Toutanova

* Company: Stanford University

*/ package edu.stanford.nlp.maxent; import edu.stanford.nlp.io.IOUtils; import edu.stanford.nlp.io.PrintFile; import edu.stanford.nlp.util.Index; import edu.stanford.nlp.util.IntPair; import edu.stanford.nlp.util.HashIndex; import java.io.BufferedReader; import java.io.FileReader; import java.util.ArrayList; /** * This class represents the training samples. It can return statistics of them, * for example the frequency of each x or y. * in the training data. * * @author Kristina Toutanova * @version 1.0 */ public class Experiments { // todo [cdm 2013]: It might be better to change this to an IntPair[] /** * vArray has dimensions [numTrainingDatums][2] and holds the x and y (word and tag index) for each training sample. * Its length is the number of data points. */ protected int[][] vArray; /** * px[x] holds the number of times the history x appeared in training data */ protected int[] px; // 4MB, may be compress it /** * py[y] holds the number of times the outcome y appeared in training data */ protected int[] py; protected int[] maxY; // for each x, which is the maximum possible y /** * pxy[x][y]=# times (x,y) occurred in training */ // TODO(horatio): pxy, xSize, ySize, and dim used to be static. // Changing them to non-static member variables did not break the // POS tagger, at least. A few other places that use this code at a // fairly low level are: // // periphery/src/edu/stanford/nlp/redwoods/Utilities.java and // ProblemSolverHSPG.java. // periphery/.../classify/internal/ILogisticRegressionFactory.java // core/.../classify/ClassifierTaggingExamples.java // core/.../propbank/srl/JointRerankTrainer.java // // It would be a good idea to test those to see if they still work // as well. protected int[][] pxy; // maybe there is a better way to keep that, if it is zero or 1 , else the number // check whether it is non-deterministic, and how much public int xSize, ySize; /** * v may hold the actual Experiments, i.e. Objects of type Experiments */ private ArrayList v = new ArrayList<>(); /** * Maximum ySize. * todo [CDM May 2007]: What is this and what does it control? Why isn't it set dynamically? * Is it the number of different y values that one x value can have? * If so, although it was set to 5, it should be 7 for the WSJ PTB. * But that doesn't solve the problem for the data set after that.... * See the commented out bits where it should exception if it overflows. * Should just be able to make it dynamic */ int dim = 7; // was 5 before CDM fiddled /** * The value of classification y for x. * Used for ranking. */ public double[][] values; public Experiments() { } /** * If this constructor is used, the maximum possible class overall is found and all classes are assumed possible * for all instances. */ public Experiments(int[][] vArray) { this.vArray = vArray; ptilde(); } /** * The number of possible classes for each instance is contained in the array maxYs * then the possible classes for x are from 0 to maxYs[x]-1. */ public Experiments(int[][] vArray, int[] maxYs) { this.vArray = vArray; ptilde(); this.maxY = maxYs; } public Experiments(int[][] vArray, int ySize) { this.vArray = vArray; this.ySize = ySize; ptilde(ySize); } public Index createIndex() { Index index = new HashIndex<>(); for (int x = 0; x < px.length; x++) { int numberY = numY(x); for (int y = 0; y < numberY; y++) { index.add(new IntPair(x, y)); } } return index; } /** * The filename has format: {@literal xSizeySize} * x1 y1 * x2 y2 * .. * {@literal } * .. */ public Experiments(String filename) { try { Exception e1 = new Exception("Incorrect data file format"); BufferedReader in = IOUtils.readerFromString(filename); String head = in.readLine(); if (!head.equals("")) { throw e1; } String xLine = in.readLine(); if (!xLine.startsWith("")) { throw e1; } if (!xLine.endsWith("")) { throw e1; } int index1 = xLine.indexOf('>'); int index2 = xLine.lastIndexOf('<'); String xSt = xLine.substring(index1 + 1, index2); System.out.println(xSt); xSize = Integer.parseInt(xSt); System.out.println("xSize is " + xSize); String yLine = in.readLine(); if (!yLine.startsWith("")) { throw e1; } if (!yLine.endsWith("")) { throw e1; } index1 = yLine.indexOf('>'); index2 = yLine.lastIndexOf('<'); ySize = Integer.parseInt(yLine.substring(index1 + 1, index2)); System.out.println("ySize is " + ySize); String nLine = in.readLine(); if (!nLine.startsWith("")) { throw e1; } if (!nLine.endsWith("")) { throw e1; } index1 = nLine.indexOf('>'); index2 = nLine.lastIndexOf('<'); int number = Integer.parseInt(nLine.substring(index1 + 1, index2)); System.out.println("number is " + number); vArray = new int[number][2]; int current = 0; while (current < number) { String experiment = in.readLine(); int index = experiment.indexOf(' '); int x = Integer.parseInt(experiment.substring(0, index)); int y = Integer.parseInt(experiment.substring(index + 1)); vArray[current][0] = x; vArray[current][1] = y; current++; } ptilde(ySize); } catch (Exception e) { System.out.println("Incorrect data file format"); e.printStackTrace(); } } public void add(Experiments m) { v.add(m); } public final void ptilde() { int maxX = 0; int maxY = 0; for (int[] sample : vArray) { if (maxX < sample[0]) { maxX = sample[0]; } if (maxY < sample[1]) { maxY = sample[1]; } } px = new int[maxX + 1]; py = new int[maxY + 1]; pxy = new int[maxX + 1][dim]; xSize = maxX + 1; ySize = maxY + 1; //GlobalHolder.xSize=xSize; //GlobalHolder.ySize=ySize; int[] yArr = new int[dim]; for (int[] sample : vArray) { int xC = sample[0]; int yC = sample[1]; px[xC]++; py[yC]++; for (int j = 0; j < dim; j++) { yArr[j] = pxy[xC][j] > 0 ? pxy[xC][j] % ySize : -1; } for (int j = 0; j < dim; j++) { if (yArr[j] == -1) { pxy[xC][j] = ySize + yC; break; } if (yC == yArr[j]) { pxy[xC][j] += ySize; break; } } // for dim //System.out.println(" Exception more than "+dim); }// for i // check for same x with different y for (int y = 0; y < ySize; y++) { double sum = 0.0; for (int x = 0; x < xSize; x++) { double p1 = ptildeXY(x, y); sum = sum + p1; } if (Math.abs(ptildeY(y) - sum) > 0.00001) { System.out.println("Experiments error: for y=" + y + ", ptildeY(y)=" + ptildeY(y) + " but Sum_x ptildeXY(x,y)=" + sum); } }// for y this.maxY = new int[xSize]; for (int j = 0; j < xSize; j++) { this.maxY[j] = ySize; } } // end ptilde() public void setMaxY(int[] maxY) { this.maxY = maxY; } public int numY(int x) { return maxY[x]; } /** When we want a pre-given number of classes. */ public void ptilde(int ySize) { int maxX = 0; int maxY = 0; this.ySize = ySize; for (int[] sample : vArray) { if (maxX < sample[0]) { maxX = sample[0]; } if (maxY < sample[1]) { maxY = sample[1]; } } px = new int[maxX + 1]; maxY = ySize - 1; py = new int[ySize]; pxy = new int[maxX + 1][dim]; xSize = maxX + 1; ySize = maxY + 1; //GlobalHolder.xSize=xSize; //GlobalHolder.ySize=ySize; int[] yArr = new int[dim]; for (int[] sample : vArray) { int xC = sample[0]; int yC = sample[1]; px[xC]++; py[yC]++; for (int j = 0; j < dim; j++) { yArr[j] = pxy[xC][j] > 0 ? pxy[xC][j] % ySize : -1; } for (int j = 0; j < dim; j++) { if (yArr[j] == -1) { pxy[xC][j] = ySize + yC; break; } if (yC == yArr[j]) { pxy[xC][j] += ySize; break; } } // for dim //System.out.println(" Exception more than "+dim); }// for i // check for same x with different y System.out.println("ySize is" + ySize); for (int y = 0; y < ySize; y++) { double sum = 0.0; for (int x = 0; x < xSize; x++) { double p1 = ptildeXY(x, y); sum = sum + p1; } if (Math.abs(ptildeY(y) - sum) > 0.00001) { System.out.println("Experiments error: for y=" + y + ", ptildeY(y)=" + ptildeY(y) + " but Sum_x ptildeXY(x,y)=" + sum); } else { System.out.println("Experiments: for y " + y + " Sum_x ptildeXY(x,y)=" + sum); } } // for y } public double ptildeX(int x) { if (x > xSize - 1) { return 0.0; } return px[x] / (double) vArray.length; } public double ptildeY(int y) { if (y > ySize - 1) { return 0.0; } return py[y] / (double) size(); } public double ptildeXY(int x, int y) { for (int j = 0; j < dim; j++) { if (y == pxy[x][j] % ySize) { return (pxy[x][j] / ySize) / (double) size(); } } return 0.0; } public int[] get(int index) { return vArray[index]; } /** Returns the number of training data items. */ public int size() { return vArray.length; } public int getNumber() { return vArray.length; } public void print() { System.out.println(" Experiments : "); for (int i = 0; i < size(); i++) { System.out.println(vArray[i][0] + " : " + vArray[i][1]); } System.out.println(" p(x) "); for (int i = 0; i < xSize; i++) { System.out.println(i + " : " + ptildeX(i)); } System.out.println(" p(y) "); for (int i = 0; i < ySize; i++) { System.out.println(i + " : " + ptildeY(i)); } } public void print(PrintFile pf) { pf.println(" Experiments : "); for (int i = 0; i < size(); i++) { pf.println(vArray[i][0] + " : " + vArray[i][1]); } pf.println(" p(x) "); for (int i = 0; i < xSize; i++) { pf.println(i + " : " + ptildeX(i)); } pf.println(" p(y) "); for (int i = 0; i < ySize; i++) { pf.println(i + " : " + ptildeY(i)); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy