Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
edu.stanford.nlp.parser.dvparser.DVParserCostAndGradient Maven / Gradle / Ivy
Go to download
Stanford Parser processes raw text in English, Chinese, German, Arabic, and French, and extracts constituency parse trees.
package edu.stanford.nlp.parser.dvparser;
import edu.stanford.nlp.util.logging.Redwood;
import java.util.ArrayList;
import java.util.Formatter;
import java.util.IdentityHashMap;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
import org.ejml.simple.SimpleMatrix;
import edu.stanford.nlp.ling.Label;
import edu.stanford.nlp.math.ArrayMath;
import edu.stanford.nlp.neural.NeuralUtils;
import edu.stanford.nlp.optimization.AbstractCachingDiffFunction;
import edu.stanford.nlp.parser.common.NoSuchParseException;
import edu.stanford.nlp.parser.lexparser.Options;
import edu.stanford.nlp.parser.metrics.TreeSpanScoring;
import edu.stanford.nlp.trees.DeepTree;
import edu.stanford.nlp.trees.Tree;
import edu.stanford.nlp.util.Generics;
import edu.stanford.nlp.util.IntPair;
import edu.stanford.nlp.util.Pair;
import edu.stanford.nlp.util.Timing;
import edu.stanford.nlp.util.TwoDimensionalMap;
import edu.stanford.nlp.util.concurrent.MulticoreWrapper;
import edu.stanford.nlp.util.concurrent.ThreadsafeProcessor;
public class DVParserCostAndGradient extends AbstractCachingDiffFunction {
/** A logger for this class */
private static Redwood.RedwoodChannels log = Redwood.channels(DVParserCostAndGradient.class);
List trainingBatch;
IdentityHashMap> topParses;
DVModel dvModel;
Options op;
public DVParserCostAndGradient(List trainingBatch,
IdentityHashMap> topParses,
DVModel dvModel, Options op) {
this.trainingBatch = trainingBatch;
this.topParses = topParses;
this.dvModel = dvModel;
this.op = op;
}
/**
* Return a null list if we don't care about context words, return a
* list of the words at the leaves of the tree if we do care
*/
private List getContextWords(Tree tree) {
List words = null;
if (op.trainOptions.useContextWords) {
words = Generics.newArrayList();
List leaves = tree.yield();
for (Label word : leaves) {
words.add(word.value());
}
}
return words;
}
private SimpleMatrix concatenateContextWords(SimpleMatrix childVec, IntPair span, List words) {
// TODO: factor out getting the words
SimpleMatrix left = (span.getSource() < 0) ? dvModel.getStartWordVector() : dvModel.getWordVector(words.get(span.getSource()));
SimpleMatrix right = (span.getTarget() >= words.size()) ? dvModel.getEndWordVector() : dvModel.getWordVector(words.get(span.getTarget()));
return NeuralUtils.concatenate(childVec, left, right);
}
public static void outputSpans(Tree tree) {
log.info(tree.getSpan() + " ");
for (Tree child : tree.children()) {
outputSpans(child);
}
}
// TODO: make this part of DVModel or DVParser?
public double score(Tree tree, IdentityHashMap nodeVectors) {
List words = getContextWords(tree);
// score of the entire tree is the sum of the scores of all of
// its nodes
// TODO: make the node vectors part of the tree itself?
IdentityHashMap scores = new IdentityHashMap<>();
try {
forwardPropagateTree(tree, words, nodeVectors, scores);
} catch (AssertionError e) {
log.info("Failed to correctly process tree " + tree);
throw e;
}
double score = 0.0;
for (Tree node : scores.keySet()) {
score += scores.get(node);
//log.info(Double.toString(score));
}
return score;
}
private void forwardPropagateTree(Tree tree, List words,
IdentityHashMap nodeVectors,
IdentityHashMap scores) {
if (tree.isLeaf()) {
return;
}
if (tree.isPreTerminal()) {
Tree wordNode = tree.children()[0];
String word = wordNode.label().value();
SimpleMatrix wordVector = dvModel.getWordVector(word);
wordVector = NeuralUtils.elementwiseApplyTanh(wordVector);
nodeVectors.put(tree, wordVector);
return;
}
for (Tree child : tree.children()) {
forwardPropagateTree(child, words, nodeVectors, scores);
}
// at this point, nodeVectors contains the vectors for all of
// the children of tree
SimpleMatrix childVec;
if (tree.children().length == 2) {
childVec = NeuralUtils.concatenateWithBias(nodeVectors.get(tree.children()[0]), nodeVectors.get(tree.children()[1]));
} else {
childVec = NeuralUtils.concatenateWithBias(nodeVectors.get(tree.children()[0]));
}
if (op.trainOptions.useContextWords) {
childVec = concatenateContextWords(childVec, tree.getSpan(), words);
}
SimpleMatrix W = dvModel.getWForNode(tree);
if (W == null) {
String error = "Could not find W for tree " + tree;
if (op.testOptions.verbose) {
log.info(error);
}
throw new NoSuchParseException(error);
}
SimpleMatrix currentVector = W.mult(childVec);
currentVector = NeuralUtils.elementwiseApplyTanh(currentVector);
nodeVectors.put(tree, currentVector);
SimpleMatrix scoreW = dvModel.getScoreWForNode(tree);
if (scoreW == null) {
String error = "Could not find scoreW for tree " + tree;
if (op.testOptions.verbose) {
log.info(error);
}
throw new NoSuchParseException(error);
}
double score = scoreW.dot(currentVector);
//score = NeuralUtils.sigmoid(score);
scores.put(tree, score);
//log.info(Double.toString(score)+" ");
}
public int domainDimension() {
// TODO: cache this for speed?
return dvModel.totalParamSize();
}
static final double TRAIN_LAMBDA = 1.0;
public List getAllHighestScoringTreesTest(List trees){
List allBestTrees = new ArrayList<>();
for (Tree tree : trees) {
allBestTrees.add(getHighestScoringTree(tree, 0));
}
return allBestTrees;
}
public DeepTree getHighestScoringTree(Tree tree, double lambda){
List hypotheses = topParses.get(tree);
if (hypotheses == null || hypotheses.size() == 0) {
throw new AssertionError("Failed to get any hypothesis trees for " + tree);
}
double bestScore = Double.NEGATIVE_INFINITY;
Tree bestTree = null;
IdentityHashMap bestVectors = null;
for (Tree hypothesis : hypotheses) {
IdentityHashMap nodeVectors = new IdentityHashMap<>();
double scoreHyp = score(hypothesis, nodeVectors);
double deltaMargin =0;
if (lambda != 0){
//TODO: RS: Play around with this parameter to prevent blowing up of scores
deltaMargin = op.trainOptions.deltaMargin * lambda * getMargin(tree, hypothesis);
}
scoreHyp = scoreHyp + deltaMargin;
if (bestTree == null || scoreHyp > bestScore) {
bestTree = hypothesis;
bestScore = scoreHyp;
bestVectors = nodeVectors;
}
}
DeepTree returnTree = new DeepTree(bestTree,bestVectors,bestScore);
return returnTree;
}
class ScoringProcessor implements ThreadsafeProcessor> {
@Override
public Pair process(Tree tree) {
// For each tree, move in the direction of the gold tree, and
// move away from the direction of the best scoring hypothesis
IdentityHashMap goldVectors = new IdentityHashMap<>();
double scoreGold = score(tree, goldVectors);
DeepTree bestTree = getHighestScoringTree(tree, TRAIN_LAMBDA);
DeepTree goldTree = new DeepTree(tree, goldVectors, scoreGold);
return Pair.makePair(goldTree, bestTree);
}
@Override
public ThreadsafeProcessor> newInstance() {
// should be threadsafe
return this;
}
}
// fill value & derivative
public void calculate(double[] theta) {
dvModel.vectorToParams(theta);
double localValue = 0.0;
double[] localDerivative = new double[theta.length];
TwoDimensionalMap binaryW_dfsG,binaryW_dfsB;
binaryW_dfsG = TwoDimensionalMap.treeMap();
binaryW_dfsB = TwoDimensionalMap.treeMap();
TwoDimensionalMap binaryScoreDerivativesG,binaryScoreDerivativesB ;
binaryScoreDerivativesG = TwoDimensionalMap.treeMap();
binaryScoreDerivativesB = TwoDimensionalMap.treeMap();
Map unaryW_dfsG,unaryW_dfsB ;
unaryW_dfsG = new TreeMap<>();
unaryW_dfsB = new TreeMap<>();
Map unaryScoreDerivativesG,unaryScoreDerivativesB ;
unaryScoreDerivativesG = new TreeMap<>();
unaryScoreDerivativesB= new TreeMap<>();
Map wordVectorDerivativesG = new TreeMap<>();
Map wordVectorDerivativesB = new TreeMap<>();
for (TwoDimensionalMap.Entry entry : dvModel.binaryTransform) {
int numRows = entry.getValue().numRows();
int numCols = entry.getValue().numCols();
binaryW_dfsG.put(entry.getFirstKey(), entry.getSecondKey(), new SimpleMatrix(numRows, numCols));
binaryW_dfsB.put(entry.getFirstKey(), entry.getSecondKey(), new SimpleMatrix(numRows, numCols));
binaryScoreDerivativesG.put(entry.getFirstKey(), entry.getSecondKey(), new SimpleMatrix(1, numRows));
binaryScoreDerivativesB.put(entry.getFirstKey(), entry.getSecondKey(), new SimpleMatrix(1, numRows));
}
for (Map.Entry entry : dvModel.unaryTransform.entrySet()) {
int numRows = entry.getValue().numRows();
int numCols = entry.getValue().numCols();
unaryW_dfsG.put(entry.getKey(), new SimpleMatrix(numRows, numCols));
unaryW_dfsB.put(entry.getKey(), new SimpleMatrix(numRows, numCols));
unaryScoreDerivativesG.put(entry.getKey(), new SimpleMatrix(1, numRows));
unaryScoreDerivativesB.put(entry.getKey(), new SimpleMatrix(1, numRows));
}
if (op.trainOptions.trainWordVectors) {
for (Map.Entry entry : dvModel.wordVectors.entrySet()) {
int numRows = entry.getValue().numRows();
int numCols = entry.getValue().numCols();
wordVectorDerivativesG.put(entry.getKey(), new SimpleMatrix(numRows, numCols));
wordVectorDerivativesB.put(entry.getKey(), new SimpleMatrix(numRows, numCols));
}
}
// Some optimization methods prints out a line without an end, so our
// debugging statements are misaligned
Timing scoreTiming = new Timing();
scoreTiming.doing("Scoring trees");
int treeNum = 0;
MulticoreWrapper> wrapper = new MulticoreWrapper<>(op.trainOptions.trainingThreads, new ScoringProcessor());
for (Tree tree : trainingBatch) {
wrapper.put(tree);
}
wrapper.join();
scoreTiming.done();
while (wrapper.peek()) {
Pair result = wrapper.poll();
DeepTree goldTree = result.first;
DeepTree bestTree = result.second;
StringBuilder treeDebugLine = new StringBuilder();
Formatter formatter = new Formatter(treeDebugLine);
boolean isDone = (Math.abs(bestTree.getScore() - goldTree.getScore()) <= 0.00001 || goldTree.getScore() > bestTree.getScore());
String done = isDone ? "done" : "";
formatter.format("Tree %6d Highest tree: %12.4f Correct tree: %12.4f %s", treeNum, bestTree.getScore(), goldTree.getScore(), done);
log.info(treeDebugLine.toString());
if (!isDone){
// if the gold tree is better than the best hypothesis tree by
// a large enough margin, then the score difference will be 0
// and we ignore the tree
double valueDelta = bestTree.getScore() - goldTree.getScore();
//double valueDelta = Math.max(0.0, - scoreGold + bestScore);
localValue += valueDelta;
// get the context words for this tree - should be the same
// for either goldTree or bestTree
List words = getContextWords(goldTree.getTree());
// The derivatives affected by this tree are only based on the
// nodes present in this tree, eg not all matrix derivatives
// will be affected by this tree
backpropDerivative(goldTree.getTree(), words, goldTree.getVectors(),
binaryW_dfsG, unaryW_dfsG,
binaryScoreDerivativesG, unaryScoreDerivativesG,
wordVectorDerivativesG);
backpropDerivative(bestTree.getTree(), words, bestTree.getVectors(),
binaryW_dfsB, unaryW_dfsB,
binaryScoreDerivativesB, unaryScoreDerivativesB,
wordVectorDerivativesB);
}
++treeNum;
}
double[] localDerivativeGood;
double[] localDerivativeB;
if (op.trainOptions.trainWordVectors) {
localDerivativeGood = NeuralUtils.paramsToVector(theta.length,
binaryW_dfsG.valueIterator(), unaryW_dfsG.values().iterator(),
binaryScoreDerivativesG.valueIterator(),
unaryScoreDerivativesG.values().iterator(),
wordVectorDerivativesG.values().iterator());
localDerivativeB = NeuralUtils.paramsToVector(theta.length,
binaryW_dfsB.valueIterator(), unaryW_dfsB.values().iterator(),
binaryScoreDerivativesB.valueIterator(),
unaryScoreDerivativesB.values().iterator(),
wordVectorDerivativesB.values().iterator());
} else {
localDerivativeGood = NeuralUtils.paramsToVector(theta.length,
binaryW_dfsG.valueIterator(), unaryW_dfsG.values().iterator(),
binaryScoreDerivativesG.valueIterator(),
unaryScoreDerivativesG.values().iterator());
localDerivativeB = NeuralUtils.paramsToVector(theta.length,
binaryW_dfsB.valueIterator(), unaryW_dfsB.values().iterator(),
binaryScoreDerivativesB.valueIterator(),
unaryScoreDerivativesB.values().iterator());
}
// correct - highest
for (int i =0 ;i words,
IdentityHashMap nodeVectors,
TwoDimensionalMap binaryW_dfs,
Map unaryW_dfs,
TwoDimensionalMap binaryScoreDerivatives,
Map unaryScoreDerivatives,
Map wordVectorDerivatives) {
SimpleMatrix delta = new SimpleMatrix(op.lexOptions.numHid, 1);
backpropDerivative(tree, words, nodeVectors,
binaryW_dfs, unaryW_dfs,
binaryScoreDerivatives, unaryScoreDerivatives, wordVectorDerivatives,
delta);
}
public void backpropDerivative(Tree tree, List words,
IdentityHashMap nodeVectors,
TwoDimensionalMap binaryW_dfs,
Map unaryW_dfs,
TwoDimensionalMap binaryScoreDerivatives,
Map unaryScoreDerivatives,
Map wordVectorDerivatives,
SimpleMatrix deltaUp) {
if (tree.isLeaf()) {
return;
}
if (tree.isPreTerminal()) {
if (op.trainOptions.trainWordVectors) {
String word = tree.children()[0].label().value();
word = dvModel.getVocabWord(word);
// SimpleMatrix currentVector = nodeVectors.get(tree);
// SimpleMatrix currentVectorDerivative = nonlinearityVectorToDerivative(currentVector);
// SimpleMatrix derivative = deltaUp.elementMult(currentVectorDerivative);
SimpleMatrix derivative = deltaUp;
wordVectorDerivatives.put(word, wordVectorDerivatives.get(word).plus(derivative));
}
return;
}
SimpleMatrix currentVector = nodeVectors.get(tree);
SimpleMatrix currentVectorDerivative = NeuralUtils.elementwiseApplyTanhDerivative(currentVector);
SimpleMatrix scoreW = dvModel.getScoreWForNode(tree);
currentVectorDerivative = currentVectorDerivative.elementMult(scoreW.transpose());
// the delta that is used at the current nodes
SimpleMatrix deltaCurrent = deltaUp.plus(currentVectorDerivative);
SimpleMatrix W = dvModel.getWForNode(tree);
SimpleMatrix WTdelta = W.transpose().mult(deltaCurrent);
if (tree.children().length == 2) {
//TODO: RS: Change to the nice "getWForNode" setup?
String leftLabel = dvModel.basicCategory(tree.children()[0].label().value());
String rightLabel = dvModel.basicCategory(tree.children()[1].label().value());
binaryScoreDerivatives.put(leftLabel, rightLabel,
binaryScoreDerivatives.get(leftLabel, rightLabel).plus(currentVector.transpose()));
SimpleMatrix leftVector = nodeVectors.get(tree.children()[0]);
SimpleMatrix rightVector = nodeVectors.get(tree.children()[1]);
SimpleMatrix childrenVector = NeuralUtils.concatenateWithBias(leftVector, rightVector);
if (op.trainOptions.useContextWords) {
childrenVector = concatenateContextWords(childrenVector, tree.getSpan(), words);
}
SimpleMatrix W_df = deltaCurrent.mult(childrenVector.transpose());
binaryW_dfs.put(leftLabel, rightLabel, binaryW_dfs.get(leftLabel, rightLabel).plus(W_df));
// and then recurse
SimpleMatrix leftDerivative = NeuralUtils.elementwiseApplyTanhDerivative(leftVector);
SimpleMatrix rightDerivative = NeuralUtils.elementwiseApplyTanhDerivative(rightVector);
SimpleMatrix leftWTDelta = WTdelta.extractMatrix(0, deltaCurrent.numRows(), 0, 1);
SimpleMatrix rightWTDelta = WTdelta.extractMatrix(deltaCurrent.numRows(), deltaCurrent.numRows() * 2, 0, 1);
backpropDerivative(tree.children()[0], words, nodeVectors,
binaryW_dfs, unaryW_dfs,
binaryScoreDerivatives, unaryScoreDerivatives, wordVectorDerivatives,
leftDerivative.elementMult(leftWTDelta));
backpropDerivative(tree.children()[1], words, nodeVectors,
binaryW_dfs, unaryW_dfs,
binaryScoreDerivatives, unaryScoreDerivatives, wordVectorDerivatives,
rightDerivative.elementMult(rightWTDelta));
} else if (tree.children().length == 1) {
String childLabel = dvModel.basicCategory(tree.children()[0].label().value());
unaryScoreDerivatives.put(childLabel,unaryScoreDerivatives.get(childLabel).plus(currentVector.transpose()));
SimpleMatrix childVector = nodeVectors.get(tree.children()[0]);
SimpleMatrix childVectorWithBias = NeuralUtils.concatenateWithBias(childVector);
if (op.trainOptions.useContextWords) {
childVectorWithBias = concatenateContextWords(childVectorWithBias, tree.getSpan(), words);
}
SimpleMatrix W_df = deltaCurrent.mult(childVectorWithBias.transpose());
// System.out.println("unary backprop derivative for " + childLabel);
// System.out.println("Old transform:");
// System.out.println(unaryW_dfs.get(childLabel));
// System.out.println(" Delta:");
// System.out.println(W_df.scale(scale));
unaryW_dfs.put(childLabel,unaryW_dfs.get(childLabel).plus(W_df));
// and then recurse
SimpleMatrix childDerivative = NeuralUtils.elementwiseApplyTanhDerivative(childVector);
//SimpleMatrix childDerivative = childVector;
SimpleMatrix childWTDelta = WTdelta.extractMatrix(0, deltaCurrent.numRows(), 0, 1);
backpropDerivative(tree.children()[0], words, nodeVectors,
binaryW_dfs, unaryW_dfs,
binaryScoreDerivatives, unaryScoreDerivatives, wordVectorDerivatives,
childDerivative.elementMult(childWTDelta));
}
}
}