All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.stanford.nlp.stats.Distribution Maven / Gradle / Ivy

Go to download

Stanford Parser processes raw text in English, Chinese, German, Arabic, and French, and extracts constituency parse trees.

The newest version!
package edu.stanford.nlp.stats; 

import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.*;

import edu.stanford.nlp.util.Generics;
import edu.stanford.nlp.util.logging.Redwood;

/**
 * Immutable class for representing normalized, smoothed discrete distributions
 * from {@link Counters}. Smoothed counters reserve probability mass for unseen
 * items, so queries for the probability of unseen items will return a small
 * positive amount.  Normalization is L1 normalization:
 * {@link #totalCount} should always return 1.
 * 

* A Counter passed into a constructor is copied. This class is Serializable. * * @author Galen Andrew ([email protected]), Sebastian Pado */ public class Distribution implements Sampler, ProbabilityDistribution { /** A logger for this class */ private static final Redwood.RedwoodChannels log = Redwood.channels(Distribution.class); private static final long serialVersionUID = 6707148234288637809L; // todo [cdm Apr 2013]: Make these 3 variables final and put into constructor private int numberOfKeys; private double reservedMass; protected Counter counter; private static final int NUM_ENTRIES_IN_STRING = 20; private static final boolean verbose = false; public Counter getCounter() { return counter; } /** * Exactly the same as sampleFrom(), needed for the Sampler interface. */ @Override public E drawSample() { return sampleFrom(); } /** * A method to draw a sample, providing an own random number generator. * Needed for the ProbabilityDistribution interface. */ @Override public E drawSample(Random random) { return sampleFrom(random); } public String toString(NumberFormat nf) { return Counters.toString(counter, nf); } public double getReservedMass() { return reservedMass; } public int getNumberOfKeys() { return numberOfKeys; } //--- cdm added Jan 2004 to help old code compile public Set keySet() { return counter.keySet(); } public boolean containsKey(E key) { return counter.containsKey(key); } /** * Returns the current count for the given key, which is 0 if it hasn't been * seen before. This is a convenient version of {@code get} that casts * and extracts the primitive value. * * @param key The key to look up. * @return The current count for the given key, which is 0 if it hasn't * been seen before */ public double getCount(E key) { return counter.getCount(key); } //---- end cdm added //--- JM added for Distributions /** * Assuming that c has a total count < 1, returns a new Distribution using the counts in c as probabilities. * If c has a total count > 1, returns a normalized distribution with no remaining mass. */ public static Distribution getDistributionFromPartiallySpecifiedCounter(Counter c, int numKeys){ Distribution d; double total = c.totalCount(); if (total >= 1.0){ d = getDistribution(c); d.numberOfKeys = numKeys; } else { d = new Distribution<>(); d.numberOfKeys = numKeys; d.counter = c; d.reservedMass = 1.0 - total; } return d; } //--- end JM added /** * @param s a Collection of keys. */ public static Distribution getUniformDistribution(Collection s) { Distribution norm = new Distribution<>(); norm.counter = new ClassicCounter<>(); norm.numberOfKeys = s.size(); norm.reservedMass = 0; double total = s.size(); double count = 1.0 / total; for (E key : s) { norm.counter.setCount(key, count); } return norm; } /** * @param s a Collection of keys. */ public static Distribution getPerturbedUniformDistribution(Collection s, Random r) { Distribution norm = new Distribution<>(); norm.counter = new ClassicCounter<>(); norm.numberOfKeys = s.size(); norm.reservedMass = 0; double total = s.size(); double prob = 1.0 / total; double stdev = prob / 1000.0; for (E key : s) { norm.counter.setCount(key, prob + (r.nextGaussian() * stdev)); } return norm; } public static Distribution getPerturbedDistribution(Counter wordCounter, Random r) { Distribution norm = new Distribution<>(); norm.counter = new ClassicCounter<>(); norm.numberOfKeys = wordCounter.size(); norm.reservedMass = 0; double totalCount = wordCounter.totalCount(); double stdev = 1.0 / norm.numberOfKeys / 1000.0; // tiny relative to average value for (E key : wordCounter.keySet()) { double prob = wordCounter.getCount(key) / totalCount; double perturbedProb = prob + (r.nextGaussian() * stdev); if (perturbedProb < 0.0) { perturbedProb = 0.0; } norm.counter.setCount(key, perturbedProb); } return norm; } /** * Creates a Distribution from the given counter. It makes an internal * copy of the counter and divides all counts by the total count. * * @return a new Distribution */ public static Distribution getDistribution(Counter counter) { return getDistributionWithReservedMass(counter, 0.0); } public static Distribution getDistributionWithReservedMass(Counter counter, double reservedMass) { Distribution norm = new Distribution<>(); norm.counter = new ClassicCounter<>(); norm.numberOfKeys = counter.size(); norm.reservedMass = reservedMass; double total = counter.totalCount() * (1 + reservedMass); if (total == 0.0) { total = 1.0; } for (E key : counter.keySet()) { double count = counter.getCount(key) / total; // if (Double.isNaN(count) || count < 0.0 || count> 1.0 ) throw new RuntimeException("count=" + counter.getCount(key) + " total=" + total); norm.counter.setCount(key, count); } return norm; } /** * Creates a Distribution from the given counter, ie makes an internal * copy of the counter and divides all counts by the total count. * * @return a new Distribution */ public static Distribution getDistributionFromLogValues(Counter counter) { Counter c = new ClassicCounter<>(); // go through once to get the max // shift all by max so as to minimize the possibility of underflow double max = Counters.max(counter); // Thang 17Feb12: max should operate on counter instead of c, fixed! for (E key : counter.keySet()) { double count = Math.exp(counter.getCount(key) - max); c.setCount(key, count); } return getDistribution(c); } public static Distribution absolutelyDiscountedDistribution(Counter counter, int numberOfKeys, double discount) { Distribution norm = new Distribution<>(); norm.counter = new ClassicCounter<>(); double total = counter.totalCount(); double reservedMass = 0.0; for (E key : counter.keySet()) { double count = counter.getCount(key); if (count > discount) { double newCount = (count - discount) / total; norm.counter.setCount(key, newCount); // a positive count left over // System.out.println("seen: " + newCount); reservedMass += discount; } else { // count <= discount reservedMass += count; // if the count <= discount, don't put key in counter, and we treat it as unseen!! } } norm.numberOfKeys = numberOfKeys; norm.reservedMass = reservedMass / total; if (verbose) { log.info("unseenKeys=" + (norm.numberOfKeys - norm.counter.size()) + " seenKeys=" + norm.counter.size() + " reservedMass=" + norm.reservedMass); double zeroCountProb = (norm.reservedMass / (numberOfKeys - norm.counter.size())); log.info("0 count prob: " + zeroCountProb); if (discount >= 1.0) { log.info("1 count prob: " + zeroCountProb); } else { log.info("1 count prob: " + (1.0 - discount) / total); } if (discount >= 2.0) { log.info("2 count prob: " + zeroCountProb); } else { log.info("2 count prob: " + (2.0 - discount) / total); } if (discount >= 3.0) { log.info("3 count prob: " + zeroCountProb); } else { log.info("3 count prob: " + (3.0 - discount) / total); } } // System.out.println("UNSEEN: " + reservedMass / total / (numberOfKeys - counter.size())); return norm; } /** * Creates an Laplace smoothed Distribution from the given counter, ie adds one count * to every item, including unseen ones, and divides by the total count. * * @return a new add-1 smoothed Distribution */ public static Distribution laplaceSmoothedDistribution(Counter counter, int numberOfKeys) { return laplaceSmoothedDistribution(counter, numberOfKeys, 1.0); } /** * Creates a smoothed Distribution using Lidstone's law, ie adds lambda (typically * between 0 and 1) to every item, including unseen ones, and divides by the total count. * * @return a new Lidstone smoothed Distribution */ public static Distribution laplaceSmoothedDistribution(Counter counter, int numberOfKeys, double lambda) { Distribution norm = new Distribution<>(); norm.counter = new ClassicCounter<>(); double total = counter.totalCount(); double newTotal = total + (lambda * numberOfKeys); double reservedMass = ((double) numberOfKeys - counter.size()) * lambda / newTotal; if (verbose) { log.info(((double) numberOfKeys - counter.size()) + " * " + lambda + " / (" + total + " + ( " + lambda + " * " + (double) numberOfKeys + ") )"); } norm.numberOfKeys = numberOfKeys; norm.reservedMass = reservedMass; if (verbose) { log.info("reserved mass=" + reservedMass); } for (E key : counter.keySet()) { double count = counter.getCount(key); norm.counter.setCount(key, (count + lambda) / newTotal); } if (verbose) { log.info("unseenKeys=" + (norm.numberOfKeys - norm.counter.size()) + " seenKeys=" + norm.counter.size() + " reservedMass=" + norm.reservedMass); log.info("0 count prob: " + lambda / newTotal); log.info("1 count prob: " + (1.0 + lambda) / newTotal); log.info("2 count prob: " + (2.0 + lambda) / newTotal); log.info("3 count prob: " + (3.0 + lambda) / newTotal); } return norm; } /** * Creates a smoothed Distribution with Laplace smoothing, but assumes an explicit * count of "UNKNOWN" items. Thus anything not in the original counter will have * probability zero. * * @param counter the counter to normalize * @param lambda the value to add to each count * @param UNK the UNKNOWN symbol * @return a new Laplace-smoothed distribution */ public static Distribution laplaceWithExplicitUnknown(Counter counter, double lambda, E UNK) { Distribution norm = new Distribution<>(); norm.counter = new ClassicCounter<>(); double total = counter.totalCount() + (lambda * (counter.size() - 1)); norm.numberOfKeys = counter.size(); norm.reservedMass = 0.0; for (E key : counter.keySet()) { if (key.equals(UNK)) { norm.counter.setCount(key, counter.getCount(key) / total); } else { norm.counter.setCount(key, (counter.getCount(key) + lambda) / total); } } return norm; } /** * Creates a Good-Turing smoothed Distribution from the given counter. * * @return a new Good-Turing smoothed Distribution. */ public static Distribution goodTuringSmoothedCounter(Counter counter, int numberOfKeys) { // gather count-counts int[] countCounts = getCountCounts(counter); // if count-counts are unreliable, we shouldn't be using G-T // revert to laplace for (int i = 1; i <= 10; i++) { if (countCounts[i] < 3) { return laplaceSmoothedDistribution(counter, numberOfKeys, 0.5); } } double observedMass = counter.totalCount(); double reservedMass = countCounts[1] / observedMass; // calculate and cache adjusted frequencies // also adjusting total mass of observed items double[] adjustedFreq = new double[10]; for (int freq = 1; freq < 10; freq++) { adjustedFreq[freq] = (double) (freq + 1) * (double) countCounts[freq + 1] / countCounts[freq]; observedMass -= (freq - adjustedFreq[freq]) * countCounts[freq]; } double normFactor = (1.0 - reservedMass) / observedMass; Distribution norm = new Distribution<>(); norm.counter = new ClassicCounter<>(); // fill in the new Distribution, renormalizing as we go for (E key : counter.keySet()) { int origFreq = (int) Math.round(counter.getCount(key)); if (origFreq < 10) { norm.counter.setCount(key, adjustedFreq[origFreq] * normFactor); } else { norm.counter.setCount(key, origFreq * normFactor); } } norm.numberOfKeys = numberOfKeys; norm.reservedMass = reservedMass; return norm; } /** * Creates a Good-Turing smoothed Distribution from the given counter without * creating any reserved mass-- instead, the special object UNK in the counter * is assumed to be the count of "UNSEEN" items. Probability of objects not in * original counter will be zero. * * @param counter the counter * @param UNK the unknown symbol * @return a good-turing smoothed distribution */ public static Distribution goodTuringWithExplicitUnknown(Counter counter, E UNK) { // gather count-counts int[] countCounts = getCountCounts(counter); // if count-counts are unreliable, we shouldn't be using G-T // revert to laplace for (int i = 1; i <= 10; i++) { if (countCounts[i] < 3) { return laplaceWithExplicitUnknown(counter, 0.5, UNK); } } double observedMass = counter.totalCount(); // calculate and cache adjusted frequencies // also adjusting total mass of observed items double[] adjustedFreq = new double[10]; for (int freq = 1; freq < 10; freq++) { adjustedFreq[freq] = (double) (freq + 1) * (double) countCounts[freq + 1] / countCounts[freq]; observedMass -= (freq - adjustedFreq[freq]) * countCounts[freq]; } Distribution norm = new Distribution<>(); norm.counter = new ClassicCounter<>(); // fill in the new Distribution, renormalizing as we go for (E key : counter.keySet()) { int origFreq = (int) Math.round(counter.getCount(key)); if (origFreq < 10) { norm.counter.setCount(key, adjustedFreq[origFreq] / observedMass); } else { norm.counter.setCount(key, origFreq / observedMass); } } norm.numberOfKeys = counter.size(); norm.reservedMass = 0.0; return norm; } private static int[] getCountCounts(Counter counter) { int[] countCounts = new int[11]; for (int i = 0; i <= 10; i++) { countCounts[i] = 0; } for (E key : counter.keySet()) { int count = (int) Math.round(counter.getCount(key)); if (count <= 10) { countCounts[count]++; } } return countCounts; } // ---------------------------------------------------------------------------- /** * Creates a Distribution from the given counter using Gale & Sampsons' * "simple Good-Turing" smoothing. * * @return a new simple Good-Turing smoothed Distribution. */ public static Distribution simpleGoodTuring(Counter counter, int numberOfKeys) { // check arguments validateCounter(counter); int numUnseen = numberOfKeys - counter.size(); if (numUnseen < 1) throw new IllegalArgumentException(String.format("ERROR: numberOfKeys %d must be > size of counter %d!", numberOfKeys, counter.size())); // do smoothing int[][] cc = countCounts2IntArrays(collectCountCounts(counter)); int[] r = cc[0]; // counts int[] n = cc[1]; // counts of counts SimpleGoodTuring sgt = new SimpleGoodTuring(r, n); // collate results Counter probsByCount = new ClassicCounter<>(); double[] probs = sgt.getProbabilities(); for (int i = 0; i < probs.length; i++) { probsByCount.setCount(r[i], probs[i]); } // make smoothed distribution Distribution dist = new Distribution<>(); dist.counter = new ClassicCounter<>(); for (Map.Entry entry : counter.entrySet()) { E item = entry.getKey(); Integer count = (int) Math.round(entry.getValue()); dist.counter.setCount(item, probsByCount.getCount(count)); } dist.numberOfKeys = numberOfKeys; dist.reservedMass = sgt.getProbabilityForUnseen(); return dist; } /* Helper to simpleGoodTuringSmoothedCounter() */ private static void validateCounter(Counter counts) { for (Map.Entry entry : counts.entrySet()) { E item = entry.getKey(); Double dblCount = entry.getValue(); if (dblCount == null) { throw new IllegalArgumentException("ERROR: null count for item " + item + "!"); } if (dblCount < 0) { throw new IllegalArgumentException("ERROR: negative count " + dblCount + " for item " + item + "!"); } } } /* Helper to simpleGoodTuringSmoothedCounter() */ private static Counter collectCountCounts(Counter counts) { Counter cc = new ClassicCounter<>(); // counts of counts for (Map.Entry entry : counts.entrySet()) { //E item = entry.getKey(); Integer count = (int) Math.round(entry.getValue()); cc.incrementCount(count); } return cc; } /* Helper to simpleGoodTuringSmoothedCounter() */ private static int[][] countCounts2IntArrays(Counter countCounts) { int size = countCounts.size(); int[][] arrays = new int[2][]; arrays[0] = new int[size]; // counts arrays[1] = new int[size]; // count counts PriorityQueue q = new PriorityQueue<>(countCounts.keySet()); int i = 0; while (!q.isEmpty()) { Integer count = q.poll(); Integer countCount = (int) Math.round(countCounts.getCount(count)); arrays[0][i] = count; arrays[1][i] = countCount; i++; } return arrays; } // ---------------------------------------------------------------------------- /** * Returns a Distribution that uses prior as a Dirichlet prior * weighted by weight. Essentially adds "pseudo-counts" for each Object * in prior equal to that Object's mass in prior times weight, * then normalizes. *

* WARNING: If unseen item is encountered in c, total may not be 1. * NOTE: This will not work if prior is a DynamicDistribution * to fix this, you could add a CounterView to Distribution and use that * in the linearCombination call below * * @param weight multiplier of prior to get "pseudo-count" * @return new Distribution */ public static Distribution distributionWithDirichletPrior(Counter c, Distribution prior, double weight) { Distribution norm = new Distribution<>(); double totalWeight = c.totalCount() + weight; if (prior instanceof DynamicDistribution) { throw new UnsupportedOperationException("Cannot make normalized counter with Dynamic prior."); } norm.counter = Counters.linearCombination(c, 1 / totalWeight, prior.counter, weight / totalWeight); norm.numberOfKeys = prior.numberOfKeys; norm.reservedMass = prior.reservedMass * weight / totalWeight; //System.out.println("totalCount: " + norm.totalCount()); return norm; } /** * Like normalizedCounterWithDirichletPrior except probabilities are * computed dynamically from the counter and prior instead of all at once up front. * The main advantage of this is if you are making many distributions from relatively * sparse counters using the same relatively dense prior, the prior is only represented * once, for major memory savings. * * @param weight multiplier of prior to get "pseudo-count" * @return new Distribution */ public static Distribution dynamicCounterWithDirichletPrior(Counter c, Distribution prior, double weight) { double totalWeight = c.totalCount() + weight; Distribution norm = new DynamicDistribution<>(prior, weight / totalWeight); norm.counter = new ClassicCounter<>(); // this might be done more efficiently with entrySet but there isn't a way to get // the entrySet from a Counter now. In most cases c will be small(-ish) anyway for (E key : c.keySet()) { double count = c.getCount(key) / totalWeight; prior.addToKeySet(key); norm.counter.setCount(key, count); } norm.numberOfKeys = prior.numberOfKeys; return norm; } private static class DynamicDistribution extends Distribution { private static final long serialVersionUID = -6073849364871185L; private final Distribution prior; private final double priorMultiplier; public DynamicDistribution(Distribution prior, double priorMultiplier) { super(); this.prior = prior; this.priorMultiplier = priorMultiplier; } @Override public double probabilityOf(E o) { return this.counter.getCount(o) + prior.probabilityOf(o) * priorMultiplier; } @Override public double totalCount() { return this.counter.totalCount() + prior.totalCount() * priorMultiplier; } @Override public Set keySet() { return prior.keySet(); } @Override public void addToKeySet(E o) { prior.addToKeySet(o); } @Override public boolean containsKey(E key) { return prior.containsKey(key); } @Override public E argmax() { return Counters.argmax(Counters.linearCombination(this.counter, 1.0, prior.counter, priorMultiplier)); } @Override public E sampleFrom() { double d = Math.random(); Set s = prior.keySet(); for (E o : s) { d -= probabilityOf(o); if (d < 0) { return o; } } log.error("Distribution sums to less than 1"); log.info("Sampled " + d + " sum is " + totalCount()); throw new RuntimeException(""); } } /** * Maps a counter representing the linear weights of a multiclass * logistic regression model to the probabilities of each class. */ public static Distribution distributionFromLogisticCounter(Counter cntr) { double expSum = 0.0; int numKeys = 0; for (E key : cntr.keySet()) { expSum += Math.exp(cntr.getCount(key)); numKeys++; } Distribution probs = new Distribution<>(); probs.counter = new ClassicCounter<>(); probs.reservedMass = 0.0; probs.numberOfKeys = numKeys; for (E key : cntr.keySet()) { probs.counter.setCount(key, Math.exp(cntr.getCount(key)) / expSum); } return probs; } /** * Returns an object sampled from the distribution using Math.random(). * There may be a faster way to do this if you need to... * * @return a sampled object */ public E sampleFrom() { return Counters.sample(counter); } /** * Returns an object sampled from the distribution using a self-provided * random number generator. * * @return a sampled object */ public E sampleFrom(Random random) { return Counters.sample(counter, random); } /** * Returns the normalized count of the given object. * * @return the normalized count of the object */ public double probabilityOf(E key) { if (counter.containsKey(key)) { return counter.getCount(key); } else { int remainingKeys = numberOfKeys - counter.size(); if (remainingKeys <= 0) { return 0.0; } else { return (reservedMass / remainingKeys); } } } /** * Returns the natural logarithm of the object's probability * * @return the logarithm of the normalised count (may be NaN if Pr==0.0) */ public double logProbabilityOf(E key) { double prob = probabilityOf(key); return Math.log(prob); } public E argmax() { return Counters.argmax(counter); } public double totalCount() { return counter.totalCount() + reservedMass; } /** * Insures that object is in keyset (with possibly zero value) * * @param o object to put in keyset */ public void addToKeySet(E o) { if (!counter.containsKey(o)) { counter.setCount(o, 0); } } @Override @SuppressWarnings("unchecked") public boolean equals(Object o) { if (this == o) { return true; } return o instanceof Distribution && equals((Distribution) o); } public boolean equals(Distribution distribution) { if (numberOfKeys != distribution.numberOfKeys) { return false; } if (reservedMass != distribution.reservedMass) { return false; } return counter.equals(distribution.counter); } @Override public int hashCode() { int result = numberOfKeys; long temp = Double.doubleToLongBits(reservedMass); result = 29 * result + (int) (temp ^ (temp >>> 32)); result = 29 * result + counter.hashCode(); return result; } // no public constructor; use static methods instead private Distribution() {} @Override public String toString() { NumberFormat nf = new DecimalFormat("0.0##E0"); List keyList = new ArrayList<>(keySet()); Collections.sort(keyList, (o1, o2) -> { if (probabilityOf(o1) < probabilityOf(o2)) { return 1; } else { return -1; } }); StringBuilder sb = new StringBuilder(); sb.append("["); for (int i = 0; i < NUM_ENTRIES_IN_STRING; i++) { if (keyList.size() <= i) { break; } E o = keyList.get(i); double prob = probabilityOf(o); sb.append(o).append(":").append(nf.format(prob)).append(" "); } sb.append("]"); return sb.toString(); } /** * For internal testing purposes only. */ public static void main(String[] args) { Counter c2 = new ClassicCounter<>(); c2.incrementCount("p", 13); c2.setCount("q", 12); c2.setCount("w", 5); c2.incrementCount("x", 7.5); // System.out.println(getDistribution(c2).getCount("w") + " should be 0.13333"); ClassicCounter c = new ClassicCounter<>(); final double p = 1000; String UNK = "!*UNKNOWN*!"; Set s = Generics.newHashSet(); s.add(UNK); // fill counter with roughly Zipfian distribution // "1" : 1000 // "2" : 500 // "3" : 333 // ... // "UNK" : 45 // ... // "666" : 2 // "667" : 1 // ... // "1000" : 1 for (int rank = 1; rank < 2000; rank++) { String i = String.valueOf(rank); c.setCount(i, Math.round(p / rank)); s.add(i); } for (int rank = 2000; rank <= 4000; rank++) { String i = String.valueOf(rank); s.add(i); } Distribution n = getDistribution(c); Distribution prior = getUniformDistribution(s); Distribution dir1 = distributionWithDirichletPrior(c, prior, 4000); Distribution dir2 = dynamicCounterWithDirichletPrior(c, prior, 4000); Distribution add1; Distribution gt; if (true) { add1 = laplaceSmoothedDistribution(c, 4000); gt = goodTuringSmoothedCounter(c, 4000); } else { c.setCount(UNK, 45); add1 = laplaceWithExplicitUnknown(c, 0.5, UNK); gt = goodTuringWithExplicitUnknown(c, UNK); } Distribution sgt = simpleGoodTuring(c, 4000); System.out.printf("%10s %10s %10s %10s %10s %10s %10s%n", "Freq", "Norm", "Add1", "Dir1", "Dir2", "GT", "SGT"); System.out.printf("%10s %10s %10s %10s %10s %10s %10s%n", "----------", "----------", "----------", "----------", "----------", "----------", "----------"); for (int i = 1; i < 5; i++) { System.out.printf("%10d ", Math.round(p / i)); String in = String.valueOf(i); System.out.printf("%10.8f ", n.probabilityOf(String.valueOf(in))); System.out.printf("%10.8f ", add1.probabilityOf(in)); System.out.printf("%10.8f ", dir1.probabilityOf(in)); System.out.printf("%10.8f ", dir2.probabilityOf(in)); System.out.printf("%10.8f ", gt.probabilityOf(in)); System.out.printf("%10.8f ", sgt.probabilityOf(in)); System.out.println(); } System.out.printf("%10s %10s %10s %10s %10s %10s %10s%n", "----------", "----------", "----------", "----------", "----------", "----------", "----------"); System.out.printf("%10d ", 1); String last = String.valueOf(1500); System.out.printf("%10.8f ", n.probabilityOf(last)); System.out.printf("%10.8f ", add1.probabilityOf(last)); System.out.printf("%10.8f ", dir1.probabilityOf(last)); System.out.printf("%10.8f ", dir2.probabilityOf(last)); System.out.printf("%10.8f ", gt.probabilityOf(last)); System.out.printf("%10.8f ", sgt.probabilityOf(last)); System.out.println(); System.out.printf("%10s %10s %10s %10s %10s %10s %10s%n", "----------", "----------", "----------", "----------", "----------", "----------", "----------"); System.out.printf("%10s ", "UNK"); System.out.printf("%10.8f ", n.probabilityOf(UNK)); System.out.printf("%10.8f ", add1.probabilityOf(UNK)); System.out.printf("%10.8f ", dir1.probabilityOf(UNK)); System.out.printf("%10.8f ", dir2.probabilityOf(UNK)); System.out.printf("%10.8f ", gt.probabilityOf(UNK)); System.out.printf("%10.8f ", sgt.probabilityOf(UNK)); System.out.println(); System.out.printf("%10s %10s %10s %10s %10s %10s %10s%n", "----------", "----------", "----------", "----------", "----------", "----------", "----------"); System.out.printf("%10s ", "RESERVE"); System.out.printf("%10.8f ", n.getReservedMass()); System.out.printf("%10.8f ", add1.getReservedMass()); System.out.printf("%10.8f ", dir1.getReservedMass()); System.out.printf("%10.8f ", dir2.getReservedMass()); System.out.printf("%10.8f ", gt.getReservedMass()); System.out.printf("%10.8f ", sgt.getReservedMass()); System.out.println(); System.out.printf("%10s %10s %10s %10s %10s %10s %10s%n", "----------", "----------", "----------", "----------", "----------", "----------", "----------"); System.out.printf("%10s ", "Total"); System.out.printf("%10.8f ", n.totalCount()); System.out.printf("%10.8f ", add1.totalCount()); System.out.printf("%10.8f ", dir1.totalCount()); System.out.printf("%10.8f ", dir2.totalCount()); System.out.printf("%10.8f ", gt.totalCount()); System.out.printf("%10.8f ", sgt.totalCount()); System.out.println(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy