ucar.nc2.iosp.hdf5.H5tiledLayout Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cdm Show documentation
Show all versions of cdm Show documentation
The NetCDF-Java Library is a Java interface to NetCDF files,
as well as to many other types of scientific data formats.
The newest version!
/*
* Copyright 1998-2009 University Corporation for Atmospheric Research/Unidata
*
* Portions of this software were developed by the Unidata Program at the
* University Corporation for Atmospheric Research.
*
* Access and use of this software shall impose the following obligations
* and understandings on the user. The user is granted the right, without
* any fee or cost, to use, copy, modify, alter, enhance and distribute
* this software, and any derivative works thereof, and its supporting
* documentation for any purpose whatsoever, provided that this entire
* notice appears in all copies of the software, derivative works and
* supporting documentation. Further, UCAR requests that the user credit
* UCAR/Unidata in any publications that result from the use of this
* software or in any product that includes this software. The names UCAR
* and/or Unidata, however, may not be used in any advertising or publicity
* to endorse or promote any products or commercial entity unless specific
* written permission is obtained from UCAR/Unidata. The user also
* understands that UCAR/Unidata is not obligated to provide the user with
* any support, consulting, training or assistance of any kind with regard
* to the use, operation and performance of this software nor to provide
* the user with any updates, revisions, new versions or "bug fixes."
*
* THIS SOFTWARE IS PROVIDED BY UCAR/UNIDATA "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL UCAR/UNIDATA BE LIABLE FOR ANY SPECIAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
* FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package ucar.nc2.iosp.hdf5;
import ucar.ma2.InvalidRangeException;
import ucar.ma2.DataType;
import ucar.ma2.Section;
import ucar.nc2.iosp.LayoutTiled;
import ucar.nc2.iosp.Layout;
import java.io.IOException;
/**
* Iterator to read/write subsets of an array.
* This calculates byte offsets for HD5 chunked datasets.
* Assumes that the data is stored in chunks, indexed by a Btree.
* for unfiltered data only
*
* @author caron
*/
class H5tiledLayout implements Layout {
private LayoutTiled delegate;
private Section want;
private int[] chunkSize; // from the StorageLayout message (exclude the elemSize)
private int elemSize; // last dimension of the StorageLayout message
private boolean debug = false;
/**
* Constructor.
* This is for HDF5 chunked data storage. The data is read by chunk, for efficency.
*
* @param vinfo the vinfo object for this variable
* @param dtype type of data. may be different from v2.
* @param wantSection the wanted section of data, contains a List of Range objects, must be complete
* @throws InvalidRangeException if section invalid for this variable
* @throws java.io.IOException on io error
*/
H5tiledLayout(H5header.Vinfo vinfo, DataType dtype, Section wantSection) throws InvalidRangeException, IOException {
assert vinfo.isChunked;
assert vinfo.btree != null;
// we have to translate the want section into the same rank as the storageSize, in order to be able to call
// Section.intersect(). It appears that storageSize (actually msl.chunkSize) may have an extra dimension, reletive
// to the Variable.
if ((dtype == DataType.CHAR) && (wantSection.getRank() < vinfo.storageSize.length))
this.want = new Section(wantSection).appendRange(1);
else
this.want = wantSection;
// one less chunk dimension, except in the case of char
int nChunkDims = (dtype == DataType.CHAR) ? vinfo.storageSize.length : vinfo.storageSize.length - 1;
this.chunkSize = new int[nChunkDims];
System.arraycopy(vinfo.storageSize, 0, chunkSize, 0, nChunkDims);
/*
if(vinfo.mdt.isVlen) {
nChunkDims++;
int[] newchunks = new int[nChunkDims];
System.arraycopy(chunkSize,0,newchunks,0,nChunkDims-1);
chunkSize = newchunks;
} */
this.elemSize = vinfo.storageSize[vinfo.storageSize.length - 1]; // last one is always the elements size
if (debug) System.out.println(" H5tiledLayout: " + this);
// create the data chunk iterator
LayoutTiled.DataChunkIterator iter = vinfo.btree.getDataChunkIteratorNoFilter(this.want, nChunkDims);
delegate = new LayoutTiled(iter, chunkSize, elemSize, this.want);
}
public long getTotalNelems() {
return delegate.getTotalNelems();
}
public int getElemSize() {
return delegate.getElemSize();
}
public boolean hasNext() {
return delegate.hasNext();
}
public Chunk next() throws IOException {
return delegate.next();
}
public String toString() {
StringBuilder sbuff = new StringBuilder();
sbuff.append("want=").append(want).append("; ");
sbuff.append("chunkSize=[");
for (int i = 0; i < chunkSize.length; i++) {
if (i > 0) sbuff.append(",");
sbuff.append(chunkSize[i]);
}
sbuff.append("] totalNelems=").append(getTotalNelems());
sbuff.append(" elemSize=").append(elemSize);
return sbuff.toString();
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy