ucar.unidata.geoloc.projection.FlatEarth Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cdm Show documentation
Show all versions of cdm Show documentation
The NetCDF-Java Library is a Java interface to NetCDF files,
as well as to many other types of scientific data formats.
The newest version!
/*
* Copyright 1998-2009 University Corporation for Atmospheric Research/Unidata
*
* Portions of this software were developed by the Unidata Program at the
* University Corporation for Atmospheric Research.
*
* Access and use of this software shall impose the following obligations
* and understandings on the user. The user is granted the right, without
* any fee or cost, to use, copy, modify, alter, enhance and distribute
* this software, and any derivative works thereof, and its supporting
* documentation for any purpose whatsoever, provided that this entire
* notice appears in all copies of the software, derivative works and
* supporting documentation. Further, UCAR requests that the user credit
* UCAR/Unidata in any publications that result from the use of this
* software or in any product that includes this software. The names UCAR
* and/or Unidata, however, may not be used in any advertising or publicity
* to endorse or promote any products or commercial entity unless specific
* written permission is obtained from UCAR/Unidata. The user also
* understands that UCAR/Unidata is not obligated to provide the user with
* any support, consulting, training or assistance of any kind with regard
* to the use, operation and performance of this software nor to provide
* the user with any updates, revisions, new versions or "bug fixes."
*
* THIS SOFTWARE IS PROVIDED BY UCAR/UNIDATA "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL UCAR/UNIDATA BE LIABLE FOR ANY SPECIAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
* FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package ucar.unidata.geoloc.projection;
import ucar.nc2.constants.CF;
import ucar.unidata.geoloc.*;
/**
* FlatEarth Projection
* This projection surface is tangent at some point (lat0, lon0) and
* has a y axis rotated from true North by some angle.
*
* We call it "flat" because it should only be used where the spherical
* geometry of the earth is not significant. In actuallity, we use the simple
* "arclen" routine which computes dy along a meridian, and dx along a
* latitude circle. We rotate the coordinate system to/from a true north system.
*
* See John Snyder, Map Projections used by the USGS, Bulletin 1532,
* 2nd edition (1983), p 145
*
* @author Unidata Development Team
* @see Projection
* @see ProjectionImpl
*/
public class FlatEarth extends ProjectionImpl {
public static final String ROTATIONANGLE = "rotationAngle";
/**
* constants from Snyder's equations
*/
private final double rotAngle, radius;
private final double lat0, lon0; // center lat/lon in radians
/**
* some constants
*/
private double cosRot, sinRot;
/**
* origin
*/
//private LatLonPointImpl origin; // why are we keeping this?
@Override
public ProjectionImpl constructCopy() {
ProjectionImpl result = new FlatEarth(getOriginLat(), getOriginLon(), getRotationAngle());
result.setDefaultMapArea(defaultMapArea);
result.setName(name);
return result;
}
/**
* Constructor with default parameters
*/
public FlatEarth() {
this(0.0, 0.0, 0.0, EARTH_RADIUS);
}
public FlatEarth(double lat0, double lon0) {
this(lat0, lon0, 0.0, EARTH_RADIUS);
}
public FlatEarth(double lat0, double lon0, double rotAngle) {
this(lat0, lon0, rotAngle, EARTH_RADIUS);
}
/**
* Construct a FlatEarth Projection, two standard parellels.
* For the one standard parellel case, set them both to the same value.
*
* @param lat0 lat origin of the coord. system on the projection plane
* @param lon0 lon origin of the coord. system on the projection plane
* @param rotAngle angle of rotation, in degrees
* @param radius earth radius in km
* @throws IllegalArgumentException if lat0, par1, par2 = +/-90 deg
*/
public FlatEarth(double lat0, double lon0, double rotAngle, double radius) {
super("FlatEarth", false);
this.lat0 = Math.toRadians(lat0);
this.lon0 = Math.toRadians(lon0);
this.rotAngle = Math.toRadians(rotAngle);
this.radius = radius;
precalculate();
addParameter(CF.GRID_MAPPING_NAME, "flat_earth");
addParameter(CF.LATITUDE_OF_PROJECTION_ORIGIN, lat0);
addParameter(CF.LONGITUDE_OF_PROJECTION_ORIGIN, lon0);
addParameter(ROTATIONANGLE, rotAngle);
addParameter(CF.EARTH_RADIUS, radius * 1000);
}
/**
* Precalculate some stuff
*/
private void precalculate() {
sinRot = Math.sin(rotAngle);
cosRot = Math.cos(rotAngle);
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
FlatEarth flatEarth = (FlatEarth) o;
if (Double.compare(flatEarth.lat0, lat0) != 0) return false;
if (Double.compare(flatEarth.lon0, lon0) != 0) return false;
if (Double.compare(flatEarth.radius, radius) != 0) return false;
if (Double.compare(flatEarth.rotAngle, rotAngle) != 0) return false;
if ((defaultMapArea == null) != (flatEarth.defaultMapArea == null)) return false; // common case is that these are null
if (defaultMapArea != null && !flatEarth.defaultMapArea.equals(defaultMapArea)) return false;
return true;
}
@Override
public int hashCode() {
int result;
long temp;
temp = rotAngle != +0.0d ? Double.doubleToLongBits(rotAngle) : 0L;
result = (int) (temp ^ (temp >>> 32));
temp = radius != +0.0d ? Double.doubleToLongBits(radius) : 0L;
result = 31 * result + (int) (temp ^ (temp >>> 32));
temp = lat0 != +0.0d ? Double.doubleToLongBits(lat0) : 0L;
result = 31 * result + (int) (temp ^ (temp >>> 32));
temp = lon0 != +0.0d ? Double.doubleToLongBits(lon0) : 0L;
result = 31 * result + (int) (temp ^ (temp >>> 32));
return result;
}
// bean properties
/**
* Get the origin longitude.
*
* @return the origin longitude.
*/
public double getOriginLon() {
return Math.toDegrees(lon0);
}
/**
* Get the origin latitude.
*
* @return the origin latitude.
*/
public double getOriginLat() {
return Math.toDegrees(lat0);
}
/**
* Get the rotation angle.
*
* @return the origin latitude.
*/
public double getRotationAngle() {
return rotAngle;
}
/**
* Get the label to be used in the gui for this type of projection
*
* @return Type label
*/
public String getProjectionTypeLabel() {
return "FlatEarth";
}
/**
* Create a String of the parameters.
*
* @return a String of the parameters
*/
public String paramsToString() {
return toString();
}
@Override
public String toString() {
return "FlatEarth{" +
"rotAngle=" + rotAngle +
", radius=" + radius +
", lat0=" + lat0 +
", lon0=" + lon0 +
'}';
}
/**
* Convert a LatLonPoint to projection coordinates
*
* @param latLon convert from these lat, lon coordinates
* @param result the object to write to
* @return the given result
*/
public ProjectionPoint latLonToProj(LatLonPoint latLon,
ProjectionPointImpl result) {
double toX, toY;
double fromLat = latLon.getLatitude();
double fromLon = latLon.getLongitude();
double dx, dy;
fromLat = Math.toRadians(fromLat);
dy = radius * (fromLat - lat0);
dx = radius * Math.cos(fromLat)
* (Math.toRadians(fromLon) - lon0);
toX = cosRot * dx - sinRot * dy;
toY = sinRot * dx + cosRot * dy;
result.setLocation(toX, toY);
return result;
}
/**
* Convert projection coordinates to a LatLonPoint
* Note: a new object is not created on each call for the return value.
*
* @param world convert from these projection coordinates
* @param result the object to write to
* @return LatLonPoint convert to these lat/lon coordinates
*/
public LatLonPoint projToLatLon(ProjectionPoint world,
LatLonPointImpl result) {
double toLat, toLon;
double x = world.getX();
double y = world.getY();
double cosl;
int TOLERENCE = 1;
double xp, yp;
xp = cosRot * x + sinRot * y;
yp = -sinRot * x + cosRot * y;
toLat = Math.toDegrees(lat0) + Math.toDegrees(yp / radius);
//double lat2;
//lat2 = lat0 + Math.toDegrees(yp/radius);
cosl = Math.cos(Math.toRadians(toLat));
if (Math.abs(cosl) < TOLERANCE) {
toLon = Math.toDegrees(lon0);
} else {
toLon = Math.toDegrees(lon0)
+ Math.toDegrees(xp / cosl / radius);
}
toLon = LatLonPointImpl.lonNormal(toLon);
result.setLatitude(toLat);
result.setLongitude(toLon);
return result;
}
/**
* Convert lat/lon coordinates to projection coordinates.
*
* @param from array of lat/lon coordinates: from[2][n],
* where from[0][i], from[1][i] is the (lat,lon)
* coordinate of the ith point
* @param to resulting array of projection coordinates,
* where to[0][i], to[1][i] is the (x,y) coordinate
* of the ith point
* @param latIndex index of latitude in "from"
* @param lonIndex index of longitude in "from"
* @return the "to" array.
*/
public float[][] latLonToProj(float[][] from, float[][] to, int latIndex,
int lonIndex) {
int cnt = from[0].length;
float[] fromLatA = from[latIndex];
float[] fromLonA = from[lonIndex];
float[] resultXA = to[INDEX_X];
float[] resultYA = to[INDEX_Y];
double toX, toY;
for (int i = 0; i < cnt; i++) {
double fromLat = fromLatA[i];
double fromLon = fromLonA[i];
fromLat = Math.toRadians(fromLat);
double dy = radius * (fromLat - lat0);
double dx = radius * Math.cos(fromLat)
* (Math.toRadians(fromLon) - lon0);
toX = cosRot * dx - sinRot * dy;
toY = sinRot * dx + cosRot * dy;
resultXA[i] = (float) toX;
resultYA[i] = (float) toY;
}
return to;
}
/**
* This returns true when the line between pt1 and pt2 crosses the seam.
* When the cone is flattened, the "seam" is lon0 +- 180.
*
* @param pt1 point 1
* @param pt2 point 2
* @return true when the line between pt1 and pt2 crosses the seam.
*/
public boolean crossSeam(ProjectionPoint pt1, ProjectionPoint pt2) {
return (pt1.getX() * pt2.getX() < 0);
}
/**
* Convert lat/lon coordinates to projection coordinates.
*
* @param from array of lat/lon coordinates: from[2][n], where
* (from[0][i], from[1][i]) is the (lat,lon) coordinate
* of the ith point
* @param to resulting array of projection coordinates: to[2][n]
* where (to[0][i], to[1][i]) is the (x,y) coordinate
* of the ith point
* @return the "to" array
*/
public float[][] projToLatLon(float[][] from, float[][] to) {
int cnt = from[0].length;
float[] fromXA = from[INDEX_X];
float[] fromYA = from[INDEX_Y];
float[] toLatA = to[INDEX_LAT];
float[] toLonA = to[INDEX_LON];
double toLat, toLon;
for (int i = 0; i < cnt; i++) {
double fromX = fromXA[i];
double fromY = fromYA[i];
double xp = cosRot * fromX + sinRot * fromY;
double yp = -sinRot * fromX + cosRot * fromY;
toLat = Math.toDegrees(lat0)
+ Math.toDegrees(yp / radius);
double cosl = Math.cos(Math.toRadians(toLat));
if (Math.abs(cosl) < TOLERANCE) {
toLon = Math.toDegrees(lon0);
} else {
toLon = Math.toDegrees(lon0)
+ Math.toDegrees(xp / cosl / radius);
}
toLon = LatLonPointImpl.lonNormal(toLon);
toLatA[i] = (float) toLat;
toLonA[i] = (float) toLon;
}
return to;
}
/**
* Convert lat/lon coordinates to projection coordinates.
*
* @param from array of lat/lon coordinates: from[2][n],
* where from[0][i], from[1][i] is the (lat,lon)
* coordinate of the ith point
* @param to resulting array of projection coordinates,
* where to[0][i], to[1][i] is the (x,y) coordinate
* of the ith point
* @param latIndex index of latitude in "from"
* @param lonIndex index of longitude in "from"
* @return the "to" array.
*/
public double[][] latLonToProj(double[][] from, double[][] to,
int latIndex, int lonIndex) {
int cnt = from[0].length;
double[] fromLatA = from[latIndex];
double[] fromLonA = from[lonIndex];
double[] resultXA = to[INDEX_X];
double[] resultYA = to[INDEX_Y];
double toX, toY;
for (int i = 0; i < cnt; i++) {
double fromLat = fromLatA[i];
double fromLon = fromLonA[i];
fromLat = Math.toRadians(fromLat);
double dy = radius * (fromLat - lat0);
double dx = radius * Math.cos(fromLat)
* (Math.toRadians(fromLon) - lon0);
toX = cosRot * dx - sinRot * dy;
toY = sinRot * dx + cosRot * dy;
resultXA[i] = toX;
resultYA[i] = toY;
}
return to;
}
/**
* Convert lat/lon coordinates to projection coordinates.
*
* @param from array of lat/lon coordinates: from[2][n], where
* (from[0][i], from[1][i]) is the (lat,lon) coordinate
* of the ith point
* @param to resulting array of projection coordinates: to[2][n]
* where (to[0][i], to[1][i]) is the (x,y) coordinate
* of the ith point
* @return the "to" array
*/
public double[][] projToLatLon(double[][] from, double[][] to) {
int cnt = from[0].length;
double[] fromXA = from[INDEX_X];
double[] fromYA = from[INDEX_Y];
double[] toLatA = to[INDEX_LAT];
double[] toLonA = to[INDEX_LON];
double toLat, toLon;
for (int i = 0; i < cnt; i++) {
double fromX = fromXA[i];
double fromY = fromYA[i];
double xp = cosRot * fromX + sinRot * fromY;
double yp = -sinRot * fromX + cosRot * fromY;
//toLat = lat0 + Math.toDegrees(yp);
toLat = Math.toDegrees(lat0)
+ Math.toDegrees(yp / radius);
double cosl = Math.cos(Math.toRadians(toLat));
if (Math.abs(cosl) < TOLERANCE) {
toLon = Math.toDegrees(lon0);
} else {
toLon = Math.toDegrees(lon0)
+ Math.toDegrees(xp / cosl / radius);
}
toLon = LatLonPointImpl.lonNormal(toLon);
toLatA[i] = toLat;
toLonA[i] = toLon;
}
return to;
}
/*ENDGENERATED*/
/**
* Test
*
* @param args not used
*/
public static void main(String[] args) {
FlatEarth a = new FlatEarth(90, -100, 0.0);
ProjectionPoint p = a.latLonToProj(89, -101);
System.out.println("proj point = " + p);
LatLonPoint ll = a.projToLatLon(p);
System.out.println("ll = " + ll);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy