All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ucar.unidata.geoloc.projection.LambertAzimuthalEqualArea Maven / Gradle / Ivy

Go to download

The NetCDF-Java Library is a Java interface to NetCDF files, as well as to many other types of scientific data formats.

The newest version!
/*
 * Copyright 1998-2009 University Corporation for Atmospheric Research/Unidata
 *
 * Portions of this software were developed by the Unidata Program at the
 * University Corporation for Atmospheric Research.
 *
 * Access and use of this software shall impose the following obligations
 * and understandings on the user. The user is granted the right, without
 * any fee or cost, to use, copy, modify, alter, enhance and distribute
 * this software, and any derivative works thereof, and its supporting
 * documentation for any purpose whatsoever, provided that this entire
 * notice appears in all copies of the software, derivative works and
 * supporting documentation.  Further, UCAR requests that the user credit
 * UCAR/Unidata in any publications that result from the use of this
 * software or in any product that includes this software. The names UCAR
 * and/or Unidata, however, may not be used in any advertising or publicity
 * to endorse or promote any products or commercial entity unless specific
 * written permission is obtained from UCAR/Unidata. The user also
 * understands that UCAR/Unidata is not obligated to provide the user with
 * any support, consulting, training or assistance of any kind with regard
 * to the use, operation and performance of this software nor to provide
 * the user with any updates, revisions, new versions or "bug fixes."
 *
 * THIS SOFTWARE IS PROVIDED BY UCAR/UNIDATA "AS IS" AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL UCAR/UNIDATA BE LIABLE FOR ANY SPECIAL,
 * INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
 * FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
 * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
 * WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE.
 */
package ucar.unidata.geoloc.projection;

import ucar.nc2.constants.CDM;
import ucar.nc2.constants.CF;
import ucar.unidata.geoloc.*;

/**
 * Lambert AzimuthalEqualArea Projection spherical earth.
 * 

* See John Snyder, Map Projections used by the USGS, Bulletin 1532, * 2nd edition (1983), p 184 * * @author Unidata Development Team * @see Projection * @see ProjectionImpl */ public class LambertAzimuthalEqualArea extends ProjectionImpl { /** * constants from Snyder's equations */ private double R, sinLat0, cosLat0, lon0Degrees; private double lat0, lon0; // center lat/lon in degrees private double falseEasting, falseNorthing; @Override public ProjectionImpl constructCopy() { ProjectionImpl result = new LambertAzimuthalEqualArea(getOriginLat(), getOriginLon(), getFalseEasting(), getFalseNorthing(), R); result.setDefaultMapArea(defaultMapArea); result.setName(name); return result; } /** * Constructor with default parameters */ public LambertAzimuthalEqualArea() { this(40.0, 100.0, 0.0, 0.0, EARTH_RADIUS); } /** * Construct a LambertAzimuthalEqualArea Projection. * * @param lat0 lat origin of the coord system on the projection plane * @param lon0 lon origin of the coord system on the projection plane * @throws IllegalArgumentException */ public LambertAzimuthalEqualArea(double lat0, double lon0) { this(lat0, lon0, 0.0, 0.0, EARTH_RADIUS); } /** * Construct a LambertAzimuthalEqualArea Projection. * * @param lat0 lat origin of the coord system on the projection plane * @param lon0 lon origin of the coord system on the projection plane * @param false_easting natural_x_coordinate + false_easting = x coordinate in km * @param false_northing natural_y_coordinate + false_northing = y coordinate in km * @param earthRadius radius of the earth in km * @throws IllegalArgumentException if lat0, par1, par2 = +/-90 deg */ public LambertAzimuthalEqualArea(double lat0, double lon0, double false_easting, double false_northing, double earthRadius) { super("LambertAzimuthalEqualArea", false); this.lat0 = Math.toRadians(lat0); lon0Degrees = lon0; this.lon0 = Math.toRadians(lon0); R = earthRadius; if (Double.isNaN(false_easting)) false_easting = 0.0; if (Double.isNaN(false_northing)) false_northing = 0.0; this.falseEasting = false_easting; this.falseNorthing = false_northing; precalculate(); addParameter(CF.GRID_MAPPING_NAME, CF.LAMBERT_AZIMUTHAL_EQUAL_AREA); addParameter(CF.LATITUDE_OF_PROJECTION_ORIGIN, lat0); addParameter(CF.LONGITUDE_OF_PROJECTION_ORIGIN, lon0); addParameter(CF.EARTH_RADIUS, earthRadius * 1000); if ((false_easting != 0.0) || (false_northing != 0.0)) { addParameter(CF.FALSE_EASTING, false_easting); addParameter(CF.FALSE_NORTHING, false_northing); addParameter(CDM.UNITS, "km"); } } /** * Precalculate some stuff */ private void precalculate() { sinLat0 = Math.sin(lat0); cosLat0 = Math.cos(lat0); lon0Degrees = Math.toDegrees(lon0); } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; LambertAzimuthalEqualArea that = (LambertAzimuthalEqualArea) o; if (Double.compare(that.R, R) != 0) return false; if (Double.compare(that.falseEasting, falseEasting) != 0) return false; if (Double.compare(that.falseNorthing, falseNorthing) != 0) return false; if (Double.compare(that.lat0, lat0) != 0) return false; if (Double.compare(that.lon0, lon0) != 0) return false; if ((defaultMapArea == null) != (that.defaultMapArea == null)) return false; // common case is that these are null if (defaultMapArea != null && !that.defaultMapArea.equals(defaultMapArea)) return false; return true; } @Override public int hashCode() { int result; long temp; temp = R != +0.0d ? Double.doubleToLongBits(R) : 0L; result = (int) (temp ^ (temp >>> 32)); temp = lat0 != +0.0d ? Double.doubleToLongBits(lat0) : 0L; result = 31 * result + (int) (temp ^ (temp >>> 32)); temp = lon0 != +0.0d ? Double.doubleToLongBits(lon0) : 0L; result = 31 * result + (int) (temp ^ (temp >>> 32)); temp = falseEasting != +0.0d ? Double.doubleToLongBits(falseEasting) : 0L; result = 31 * result + (int) (temp ^ (temp >>> 32)); temp = falseNorthing != +0.0d ? Double.doubleToLongBits(falseNorthing) : 0L; result = 31 * result + (int) (temp ^ (temp >>> 32)); return result; } // bean properties /** * Get the origin longitude. * * @return the origin longitude. */ public double getOriginLon() { return Math.toDegrees(lon0); } /** * Get the origin latitude. * * @return the origin latitude. */ public double getOriginLat() { return Math.toDegrees(lat0); } /** * Get the false easting, in km. * * @return the false easting. */ public double getFalseEasting() { return falseEasting; } /** * Get the false northing, in km. * * @return the false northing. */ public double getFalseNorthing() { return falseNorthing; } ////////////////////////////////////////////// // setters for IDV serialization - do not use except for object creating /** * Set the origin longitude. * @param lon the origin longitude. */ public void setOriginLon(double lon) { lon0 = Math.toRadians(lon); precalculate(); } /** * Set the origin latitude. * * @param lat the origin latitude. */ public void setOriginLat(double lat) { lat0 = Math.toRadians(lat); precalculate(); } /** * Set the false_easting, in km. * natural_x_coordinate + false_easting = x coordinate * @param falseEasting x offset */ public void setFalseEasting(double falseEasting) { this.falseEasting = falseEasting; } /** * Set the false northing, in km. * natural_y_coordinate + false_northing = y coordinate * @param falseNorthing y offset */ public void setFalseNorthing(double falseNorthing) { this.falseNorthing = falseNorthing; } ///////////////////////////////////////////////////////////////////// /** * Get the label to be used in the gui for this type of projection * * @return Type label */ public String getProjectionTypeLabel() { return "Lambert Azimuth Equal Area"; } /** * Create a String of the parameters. * * @return a String of the parameters */ public String paramsToString() { return toString(); } @Override public String toString() { return "LambertAzimuthalEqualArea{" + "falseNorthing=" + falseNorthing + ", falseEasting=" + falseEasting + ", lon0=" + lon0 + ", lat0=" + lat0 + ", R=" + R + '}'; } /** * This returns true when the line between pt1 and pt2 crosses the seam. * When the cone is flattened, the "seam" is lon0 +- 180. * * @param pt1 point 1 * @param pt2 point 2 * @return true when the line between pt1 and pt2 crosses the seam. */ public boolean crossSeam(ProjectionPoint pt1, ProjectionPoint pt2) { // either point is infinite if (ProjectionPointImpl.isInfinite(pt1) || ProjectionPointImpl.isInfinite(pt2)) { return true; } // opposite signed X values, larger then 5000 km return (pt1.getX() * pt2.getX() < 0) && (Math.abs(pt1.getX() - pt2.getX()) > 5000.0); } /*MACROBODY latLonToProj {} { fromLat = Math.toRadians(fromLat); double lonDiff = Math.toRadians(LatLonPointImpl.lonNormal(fromLon-lon0Degrees)); double g = sinLat0*Math.sin(fromLat) + cosLat0*Math.cos(fromLat)*Math.cos(lonDiff); double kPrime = Math.sqrt(2/(1 + g)); toX = R*kPrime*Math.cos(fromLat)*Math.sin(lonDiff) + falseEasting; toY = R*kPrime*(cosLat0*Math.sin(fromLat) - sinLat0*Math.cos(fromLat)*Math.cos(lonDiff)) + falseNorthing; } projToLatLon {} { fromX = fromX - falseEasting; fromY = fromY - falseNorthing; double rho = Math.sqrt(fromX*fromX + fromY*fromY); double c = 2*Math.asin(rho/(2*R)); toLon = lon0; double temp = 0; if (Math.abs(rho) > TOLERANCE) { toLat = Math.asin(Math.cos(c)*sinLat0 + (fromY*Math.sin(c)*cosLat0/rho)); if (Math.abs(lat0 - PI_OVER_4) > TOLERANCE) { // not 90 or -90 temp = rho*cosLat0*Math.cos(c) - fromY*sinLat0*Math.sin(c); toLon = lon0 + Math.atan(fromX*Math.sin(c)/temp); } else if (lat0 == PI_OVER_4) { toLon = lon0 + Math.atan(fromX/-fromY); temp = -fromY; } else { toLon = lon0 + Math.atan(fromX/fromY); temp = fromY; } } else { toLat = lat0; } toLat= Math.toDegrees(toLat); toLon= Math.toDegrees(toLon); if (temp < 0) toLon += 180; toLon= LatLonPointImpl.lonNormal(toLon); } MACROBODY*/ /*BEGINGENERATED*/ /* Note this section has been generated using the convert.tcl script. This script, run as: tcl convert.tcl LambertAzimuthalEqualArea.java takes the actual projection conversion code defined in the MACROBODY section above and generates the following 6 methods */ /** * Convert a LatLonPoint to projection coordinates * * @param latLon convert from these lat, lon coordinates * @param result the object to write to * @return the given result */ public ProjectionPoint latLonToProj(LatLonPoint latLon, ProjectionPointImpl result) { double toX, toY; double fromLat = latLon.getLatitude(); double fromLon = latLon.getLongitude(); fromLat = Math.toRadians(fromLat); double lonDiff = Math.toRadians(LatLonPointImpl.lonNormal(fromLon - lon0Degrees)); double g = sinLat0 * Math.sin(fromLat) + cosLat0 * Math.cos(fromLat) * Math.cos(lonDiff); double kPrime = Math.sqrt(2 / (1 + g)); toX = R * kPrime * Math.cos(fromLat) * Math.sin(lonDiff) + falseEasting; toY = R * kPrime * (cosLat0 * Math.sin(fromLat) - sinLat0 * Math.cos(fromLat) * Math.cos(lonDiff)) + falseNorthing; result.setLocation(toX, toY); return result; } /** * Convert projection coordinates to a LatLonPoint * Note: a new object is not created on each call for the return value. * * @param world convert from these projection coordinates * @param result the object to write to * @return LatLonPoint convert to these lat/lon coordinates */ public LatLonPoint projToLatLon(ProjectionPoint world, LatLonPointImpl result) { double toLat, toLon; double fromX = world.getX(); double fromY = world.getY(); fromX = fromX - falseEasting; fromY = fromY - falseNorthing; double rho = Math.sqrt(fromX * fromX + fromY * fromY); double c = 2 * Math.asin(rho / (2 * R)); toLon = lon0; double temp = 0; if (Math.abs(rho) > TOLERANCE) { toLat = Math.asin(Math.cos(c) * sinLat0 + (fromY * Math.sin(c) * cosLat0 / rho)); if (Math.abs(lat0 - PI_OVER_4) > TOLERANCE) { // not 90 or -90 temp = rho * cosLat0 * Math.cos(c) - fromY * sinLat0 * Math.sin(c); toLon = lon0 + Math.atan(fromX * Math.sin(c) / temp); } else if (Double.compare(lat0, PI_OVER_4) == 0) { toLon = lon0 + Math.atan(fromX / -fromY); temp = -fromY; } else { toLon = lon0 + Math.atan(fromX / fromY); temp = fromY; } } else { toLat = lat0; } toLat = Math.toDegrees(toLat); toLon = Math.toDegrees(toLon); if (temp < 0) { toLon += 180; } toLon = LatLonPointImpl.lonNormal(toLon); result.setLatitude(toLat); result.setLongitude(toLon); return result; } /** * Convert lat/lon coordinates to projection coordinates. * * @param from array of lat/lon coordinates: from[2][n], * where from[0][i], from[1][i] is the (lat,lon) * coordinate of the ith point * @param to resulting array of projection coordinates, * where to[0][i], to[1][i] is the (x,y) coordinate * of the ith point * @param latIndex index of latitude in "from" * @param lonIndex index of longitude in "from" * @return the "to" array. */ public float[][] latLonToProj(float[][] from, float[][] to, int latIndex, int lonIndex) { int cnt = from[0].length; float[] fromLatA = from[latIndex]; float[] fromLonA = from[lonIndex]; float[] resultXA = to[INDEX_X]; float[] resultYA = to[INDEX_Y]; double toX, toY; for (int i = 0; i < cnt; i++) { double fromLat = fromLatA[i]; double fromLon = fromLonA[i]; fromLat = Math.toRadians(fromLat); double lonDiff = Math.toRadians(LatLonPointImpl.lonNormal(fromLon - lon0Degrees)); double g = sinLat0 * Math.sin(fromLat) + cosLat0 * Math.cos(fromLat) * Math.cos(lonDiff); double kPrime = Math.sqrt(2 / (1 + g)); toX = R * kPrime * Math.cos(fromLat) * Math.sin(lonDiff) + falseEasting; toY = R * kPrime * (cosLat0 * Math.sin(fromLat) - sinLat0 * Math.cos(fromLat) * Math.cos(lonDiff)) + falseNorthing; resultXA[i] = (float) toX; resultYA[i] = (float) toY; } return to; } /** * Convert lat/lon coordinates to projection coordinates. * * @param from array of lat/lon coordinates: from[2][n], where * (from[0][i], from[1][i]) is the (lat,lon) coordinate * of the ith point * @param to resulting array of projection coordinates: to[2][n] * where (to[0][i], to[1][i]) is the (x,y) coordinate * of the ith point * @return the "to" array */ public float[][] projToLatLon(float[][] from, float[][] to) { int cnt = from[0].length; float[] fromXA = from[INDEX_X]; float[] fromYA = from[INDEX_Y]; float[] toLatA = to[INDEX_LAT]; float[] toLonA = to[INDEX_LON]; double toLat, toLon; for (int i = 0; i < cnt; i++) { double fromX = fromXA[i]; double fromY = fromYA[i]; fromX = fromX - falseEasting; fromY = fromY - falseNorthing; double rho = Math.sqrt(fromX * fromX + fromY * fromY); double c = 2 * Math.asin(rho / (2 * R)); toLon = lon0; double temp = 0; if (Math.abs(rho) > TOLERANCE) { toLat = Math.asin(Math.cos(c) * sinLat0 + (fromY * Math.sin(c) * cosLat0 / rho)); if (Math.abs(lat0 - PI_OVER_4) > TOLERANCE) { // not 90 or -90 temp = rho * cosLat0 * Math.cos(c) - fromY * sinLat0 * Math.sin(c); toLon = lon0 + Math.atan(fromX * Math.sin(c) / temp); } else if (Double.compare(lat0, PI_OVER_4) == 0) { toLon = lon0 + Math.atan(fromX / -fromY); temp = -fromY; } else { toLon = lon0 + Math.atan(fromX / fromY); temp = fromY; } } else { toLat = lat0; } toLat = Math.toDegrees(toLat); toLon = Math.toDegrees(toLon); if (temp < 0) { toLon += 180; } toLon = LatLonPointImpl.lonNormal(toLon); toLatA[i] = (float) toLat; toLonA[i] = (float) toLon; } return to; } /** * Convert lat/lon coordinates to projection coordinates. * * @param from array of lat/lon coordinates: from[2][n], * where from[0][i], from[1][i] is the (lat,lon) * coordinate of the ith point * @param to resulting array of projection coordinates, * where to[0][i], to[1][i] is the (x,y) coordinate * of the ith point * @param latIndex index of latitude in "from" * @param lonIndex index of longitude in "from" * @return the "to" array. */ public double[][] latLonToProj(double[][] from, double[][] to, int latIndex, int lonIndex) { int cnt = from[0].length; double[] fromLatA = from[latIndex]; double[] fromLonA = from[lonIndex]; double[] resultXA = to[INDEX_X]; double[] resultYA = to[INDEX_Y]; double toX, toY; for (int i = 0; i < cnt; i++) { double fromLat = fromLatA[i]; double fromLon = fromLonA[i]; fromLat = Math.toRadians(fromLat); double lonDiff = Math.toRadians(LatLonPointImpl.lonNormal(fromLon - lon0Degrees)); double g = sinLat0 * Math.sin(fromLat) + cosLat0 * Math.cos(fromLat) * Math.cos(lonDiff); double kPrime = Math.sqrt(2 / (1 + g)); toX = R * kPrime * Math.cos(fromLat) * Math.sin(lonDiff) + falseEasting; toY = R * kPrime * (cosLat0 * Math.sin(fromLat) - sinLat0 * Math.cos(fromLat) * Math.cos(lonDiff)) + falseNorthing; resultXA[i] = toX; resultYA[i] = toY; } return to; } /** * Convert lat/lon coordinates to projection coordinates. * * @param from array of lat/lon coordinates: from[2][n], where * (from[0][i], from[1][i]) is the (lat,lon) coordinate * of the ith point * @param to resulting array of projection coordinates: to[2][n] * where (to[0][i], to[1][i]) is the (x,y) coordinate * of the ith point * @return the "to" array */ public double[][] projToLatLon(double[][] from, double[][] to) { int cnt = from[0].length; double[] fromXA = from[INDEX_X]; double[] fromYA = from[INDEX_Y]; double[] toLatA = to[INDEX_LAT]; double[] toLonA = to[INDEX_LON]; double toLat, toLon; for (int i = 0; i < cnt; i++) { double fromX = fromXA[i]; double fromY = fromYA[i]; fromX = fromX - falseEasting; fromY = fromY - falseNorthing; double rho = Math.sqrt(fromX * fromX + fromY * fromY); double c = 2 * Math.asin(rho / (2 * R)); toLon = lon0; double temp = 0; if (Math.abs(rho) > TOLERANCE) { toLat = Math.asin(Math.cos(c) * sinLat0 + (fromY * Math.sin(c) * cosLat0 / rho)); if (Math.abs(lat0 - PI_OVER_4) > TOLERANCE) { // not 90 or -90 temp = rho * cosLat0 * Math.cos(c) - fromY * sinLat0 * Math.sin(c); toLon = lon0 + Math.atan(fromX * Math.sin(c) / temp); } else if (Double.compare(lat0, PI_OVER_4) == 0) { toLon = lon0 + Math.atan(fromX / -fromY); temp = -fromY; } else { toLon = lon0 + Math.atan(fromX / fromY); temp = fromY; } } else { toLat = lat0; } toLat = Math.toDegrees(toLat); toLon = Math.toDegrees(toLon); if (temp < 0) { toLon += 180; } toLon = LatLonPointImpl.lonNormal(toLon); toLatA[i] = toLat; toLonA[i] = toLon; } return to; } /*ENDGENERATED*/ /** * Test * * @param args not used */ public static void main(String[] args) { LambertAzimuthalEqualArea a = new LambertAzimuthalEqualArea(40, -100); ProjectionPoint p = a.latLonToProj(-20, 100); System.out.println("proj point = " + p); LatLonPoint ll = a.projToLatLon(p); System.out.println("ll = " + ll); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy