ucar.unidata.geoloc.projection.LatLonProjection Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cdm Show documentation
Show all versions of cdm Show documentation
The NetCDF-Java Library is a Java interface to NetCDF files,
as well as to many other types of scientific data formats.
The newest version!
/*
* Copyright 1998-2009 University Corporation for Atmospheric Research/Unidata
*
* Portions of this software were developed by the Unidata Program at the
* University Corporation for Atmospheric Research.
*
* Access and use of this software shall impose the following obligations
* and understandings on the user. The user is granted the right, without
* any fee or cost, to use, copy, modify, alter, enhance and distribute
* this software, and any derivative works thereof, and its supporting
* documentation for any purpose whatsoever, provided that this entire
* notice appears in all copies of the software, derivative works and
* supporting documentation. Further, UCAR requests that the user credit
* UCAR/Unidata in any publications that result from the use of this
* software or in any product that includes this software. The names UCAR
* and/or Unidata, however, may not be used in any advertising or publicity
* to endorse or promote any products or commercial entity unless specific
* written permission is obtained from UCAR/Unidata. The user also
* understands that UCAR/Unidata is not obligated to provide the user with
* any support, consulting, training or assistance of any kind with regard
* to the use, operation and performance of this software nor to provide
* the user with any updates, revisions, new versions or "bug fixes."
*
* THIS SOFTWARE IS PROVIDED BY UCAR/UNIDATA "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL UCAR/UNIDATA BE LIABLE FOR ANY SPECIAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
* FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package ucar.unidata.geoloc.projection;
import ucar.nc2.constants.CF;
import ucar.unidata.geoloc.*;
import ucar.unidata.util.Format;
/**
* This is the "fake" identity projection where world coord = latlon coord.
* Topologically its the same as a cylinder tangent to the earth at the equator.
* The cylinder is cut at the "seam" = centerLon +- 180.
* Longitude values are always kept in the range [centerLon +-180]
*
* @author John Caron
* @see ProjectionImpl
*/
public class LatLonProjection extends ProjectionImpl {
/**
* center longitude
*/
private double centerLon = 0.0;
@Override
public ProjectionImpl constructCopy() {
ProjectionImpl result = new LatLonProjection(getName(), getDefaultMapArea());
result.setDefaultMapArea(defaultMapArea);
result.setName(name);
return result;
}
/**
* Default constructor
*/
public LatLonProjection() {
this("LatLonProjection");
}
/**
* Create a new LatLonProjection
*
* @param name name of projection
*/
public LatLonProjection(String name) {
this(name, new ProjectionRect(-180, -90, 180, 90));
}
/**
* Create a new LatLonProjection
*
* @param name name of projection
* @param defaultMapArea bounding box
*/
public LatLonProjection(String name, ProjectionRect defaultMapArea) {
super(name, true);
this.defaultMapArea = defaultMapArea;
addParameter(CF.GRID_MAPPING_NAME, CF.LATITUDE_LONGITUDE);
}
/**
* Get the label to be used in the gui for this type of projection
*
* @return Type label
*/
public String getProjectionTypeLabel() {
return "Lat/Lon";
}
/**
* Get a String of the parameters
*
* @return a String of the parameters
*/
public String paramsToString() {
return "Center lon:" + Format.d(centerLon, 3);
}
/**
* See if this projection equals the object in question
*
* @param o object in question
* @return true if it is a LatLonProjection and covers the same area
*/
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
LatLonProjection that = (LatLonProjection) o;
if ((defaultMapArea == null) != (that.defaultMapArea == null)) return false; // common case is that these are null
if (defaultMapArea != null && !that.defaultMapArea.equals(defaultMapArea)) return false;
return Double.compare(that.centerLon, centerLon) == 0;
}
@Override
public int hashCode() {
int result;
long temp;
temp = Double.doubleToLongBits(centerLon);
result = (int) (temp ^ (temp >>> 32));
if (defaultMapArea != null)
result = 31 * result + defaultMapArea.hashCode();
return result;
}
/**
* Convert a LatLonPoint to projection coordinates
*
* @param latlon convert from these lat, lon coordinates
* @param result the object to write to
* @return the given result
*/
public ProjectionPoint latLonToProj(LatLonPoint latlon, ProjectionPointImpl result) {
result.setLocation(LatLonPointImpl.lonNormal(latlon.getLongitude(),
centerLon), latlon.getLatitude());
return result;
}
/**
* Convert projection coordinates to a LatLonPoint
* Note: a new object is not created on each call for the return value.
*
* @param world convert from these projection coordinates
* @param result the object to write to
* @return LatLonPoint convert to these lat/lon coordinates
*/
public LatLonPoint projToLatLon(ProjectionPoint world, LatLonPointImpl result) {
result.setLongitude(world.getX());
result.setLatitude(world.getY());
return result;
}
/**
* Convert projection coordinates to lat/lon coordinate.
*
* @param from array of projection coordinates: from[2][n], where
* (from[0][i], from[1][i]) is the (x, y) coordinate
* of the ith point
* @param to resulting array of lat/lon coordinates: to[2][n] where
* (to[0][i], to[1][i]) is the (lat, lon) coordinate of
* the ith point
* @return the "to" array
*/
public float[][] projToLatLon(float[][] from, float[][] to) {
float[] fromX = from[INDEX_X];
float[] fromY = from[INDEX_Y];
to[INDEX_LAT] = fromY;
to[INDEX_LON] = fromX;
return to;
}
/**
* Convert lat/lon coordinates to projection coordinates.
*
* @param from array of lat/lon coordinates: from[2][n], where
* (from[latIndex][i], from[lonIndex][i]) is the (lat,lon)
* coordinate of the ith point
* @param to resulting array of projection coordinates: to[2][n]
* where (to[0][i], to[1][i]) is the (x,y) coordinate of
* the ith point
* @param latIndex index of lat coordinate; must be 0 or 1
* @param lonIndex index of lon coordinate; must be 0 or 1
* @return the "to" array
*/
public float[][] latLonToProj(float[][] from, float[][] to, int latIndex,
int lonIndex) {
int cnt = from[0].length;
float[] toX = to[INDEX_X];
float[] toY = to[INDEX_Y];
float[] fromLat = from[latIndex];
float[] fromLon = from[lonIndex];
float lat, lon;
for (int i = 0; i < cnt; i++) {
lat = fromLat[i];
lon = (float) (centerLon
+ Math.IEEEremainder(fromLon[i] - centerLon,
360.0));
toX[i] = lon;
toY[i] = lat;
}
return to;
}
/**
* Convert projection coordinates to lat/lon coordinate.
*
* @param from array of projection coordinates: from[2][n], where
* (from[0][i], from[1][i]) is the (x, y) coordinate
* of the ith point
* @param to resulting array of lat/lon coordinates: to[2][n] where
* (to[0][i], to[1][i]) is the (lat, lon) coordinate of
* the ith point
* @return the "to" array
*/
public double[][] projToLatLon(double[][] from, double[][] to) {
double[] fromX = from[INDEX_X];
double[] fromY = from[INDEX_Y];
to[INDEX_LAT] = fromY;
to[INDEX_LON] = fromX;
return to;
}
/**
* Convert lat/lon coordinates to projection coordinates.
*
* @param from array of lat/lon coordinates: from[2][n], where
* (from[latIndex][i], from[lonIndex][i]) is the (lat,lon)
* coordinate of the ith point
* @param to resulting array of projection coordinates: to[2][n]
* where (to[0][i], to[1][i]) is the (x,y) coordinate of
* the ith point
* @param latIndex index of lat coordinate; must be 0 or 1
* @param lonIndex index of lon coordinate; must be 0 or 1
* @return the "to" array
*/
public double[][] latLonToProj(double[][] from, double[][] to,
int latIndex, int lonIndex) {
int cnt = from[0].length;
double[] toX = to[INDEX_X];
double[] toY = to[INDEX_Y];
double[] fromLat = from[latIndex];
double[] fromLon = from[lonIndex];
double lat, lon;
for (int i = 0; i < cnt; i++) {
lat = fromLat[i];
lon = centerLon
+ Math.IEEEremainder(fromLon[i] - centerLon, 360.0);
toX[i] = lon;
toY[i] = lat;
}
return to;
}
/**
* Set the center of the Longitude range. It is normalized to +/- 180.
* The cylinder is cut at the "seam" = centerLon +- 180.
* Use this to keep the Longitude values kept in the range [centerLon +-180], which
* makes seam handling easier.
*
* @param centerLon the center of the Longitude range.
* @return centerLon normalized to +/- 180.
*/
public double setCenterLon(double centerLon) {
this.centerLon = LatLonPointImpl.lonNormal(centerLon);
return this.centerLon;
}
/**
* Get the center of the Longitude range. It is normalized to +/- 180.
*
* @return the center longitude
*/
public double getCenterLon() {
return centerLon;
}
/**
* Does the line between these two points cross the projection "seam".
*
* @param pt1 the line goes between these two points
* @param pt2 the line goes between these two points
* @return false if there is no seam
*/
public boolean crossSeam(ProjectionPoint pt1, ProjectionPoint pt2) {
return Math.abs(pt1.getX() - pt2.getX()) > 270.0; // ?? LOOK: do I believe this
}
/**
* Set a reasonable bounding box for this projection.
*
* @param bb a reasonable bounding box
*/
public void setDefaultMapArea(ProjectionRect bb) {
super.setDefaultMapArea(bb);
this.centerLon = bb.getCenterX();
// setCenterLon( bb.getCenterX());
}
/**
* Split a latlon rectangle to the equivalent ProjectionRect
* using this LatLonProjection to split it at the seam if needed.
*
* @param latlonR the latlon rectangle to transform
* @return 1 or 2 ProjectionRect. If it doesnt cross the seam,
* the second rectangle is null.
*/
public ProjectionRect[] latLonToProjRect(LatLonRect latlonR) {
double lat0 = latlonR.getLowerLeftPoint().getLatitude();
double height = Math.abs(latlonR.getUpperRightPoint().getLatitude() - lat0);
double width = latlonR.getWidth();
double lon0 = LatLonPointImpl.lonNormal(
latlonR.getLowerLeftPoint().getLongitude(),
centerLon);
double lon1 = LatLonPointImpl.lonNormal(
latlonR.getUpperRightPoint().getLongitude(),
centerLon);
ProjectionRect[] rects = new ProjectionRect[] {new ProjectionRect(), new ProjectionRect()};
if (lon0 < lon1) {
rects[0].setRect(lon0, lat0, width, height);
rects[1] = null;
} else {
double y = centerLon + 180 - lon0;
rects[0].setRect(lon0, lat0, y, height);
rects[1].setRect(lon1 - width + y, lat0, width - y, height);
}
return rects;
}
public LatLonRect projToLatLonBB(ProjectionRect world) {
double startLat = world.getMinY();
double startLon = world.getMinX();
double deltaLat = world.getHeight();
double deltaLon = world.getWidth();
LatLonPoint llpt = new LatLonPointImpl(startLat, startLon);
return new LatLonRect(llpt, deltaLat, deltaLon);
}
/**
* projection rect 1
*/
//private ProjectionRect projR1 = new ProjectionRect();
/**
* projection rect 1
*/
//private ProjectionRect projR2 = new ProjectionRect();
/**
* array fo rects
*/
//private ProjectionRect rects[] = new ProjectionRect[2];
/**
* Create a latlon rectangle and split it into the equivalent
* ProjectionRect using this LatLonProjection. The latlon rect is
* constructed from 2 lat/lon points. The lon values are considered
* coords in the latlonProjection, and so do not have to be +/- 180.
*
* @param lat0 lat of point 1
* @param lon0 lon of point 1
* @param lat1 lat of point 1
* @param lon1 lon of point 1
* @return 1 or 2 ProjectionRect. If it doesnt cross the seam,
* the second rectangle is null.
*/
public ProjectionRect[] latLonToProjRect(double lat0, double lon0, double lat1, double lon1) {
double height = Math.abs(lat1 - lat0);
lat0 = Math.min(lat1, lat0);
double width = lon1 - lon0;
if (width < 1.0e-8) {
width = 360.0; // assume its the whole thing
}
lon0 = LatLonPointImpl.lonNormal(lon0, centerLon);
lon1 = LatLonPointImpl.lonNormal(lon1, centerLon);
ProjectionRect[] rects = new ProjectionRect[] {new ProjectionRect(), new ProjectionRect()};
if (width >= 360.0) {
rects[0].setRect(centerLon - 180.0, lat0, 360.0, height);
rects[1] = null;
} else if (lon0 < lon1) {
rects[0].setRect(lon0, lat0, width, height);
rects[1] = null;
} else {
double y = centerLon + 180 - lon0;
rects[0].setRect(lon0, lat0, y, height);
rects[1].setRect(lon1 - width + y, lat0, width - y, height);
}
return rects;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy