ucar.unidata.geoloc.projection.RotatedPole Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cdm Show documentation
Show all versions of cdm Show documentation
The NetCDF-Java Library is a Java interface to NetCDF files,
as well as to many other types of scientific data formats.
The newest version!
/*
* Copyright 1998-2009 University Corporation for Atmospheric Research/Unidata
*
* Portions of this software were developed by the Unidata Program at the
* University Corporation for Atmospheric Research.
*
* Access and use of this software shall impose the following obligations
* and understandings on the user. The user is granted the right, without
* any fee or cost, to use, copy, modify, alter, enhance and distribute
* this software, and any derivative works thereof, and its supporting
* documentation for any purpose whatsoever, provided that this entire
* notice appears in all copies of the software, derivative works and
* supporting documentation. Further, UCAR requests that the user credit
* UCAR/Unidata in any publications that result from the use of this
* software or in any product that includes this software. The names UCAR
* and/or Unidata, however, may not be used in any advertising or publicity
* to endorse or promote any products or commercial entity unless specific
* written permission is obtained from UCAR/Unidata. The user also
* understands that UCAR/Unidata is not obligated to provide the user with
* any support, consulting, training or assistance of any kind with regard
* to the use, operation and performance of this software nor to provide
* the user with any updates, revisions, new versions or "bug fixes."
*
* THIS SOFTWARE IS PROVIDED BY UCAR/UNIDATA "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL UCAR/UNIDATA BE LIABLE FOR ANY SPECIAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
* FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This software is provided by the National Aeronatics and Space
* Administration Goddard Institute for Space Studies (NASA GISS) for full,
* free and open release. It is understood by the recipient/user that NASA
* assumes no liability for any errors contained in the code. Although this
* software is released without conditions or restrictions in its use, it is
* expected that appropriate credit be given to its author and to NASA GISS
* should the software be included by the recipient in acknowledgments or
* credits in other product development.
*/
package ucar.unidata.geoloc.projection;
import ucar.nc2.constants.CF;
import ucar.unidata.geoloc.*;
/**
* Rotated-pole longitude-latitude grid.
*
* This is probably the same as rotated lat lon, using matrix to do rotation.
* Follows CF convention with "north_pole lat/lon", whereas RotatedLatLon uses
* south pole. LOOK
*
* @author Robert Schmunk
* @author jcaron
*/
public class RotatedPole extends ProjectionImpl {
private static final double RAD_PER_DEG = Math.PI / 180.;
private static final double DEG_PER_RAD = 1. / RAD_PER_DEG;
private static boolean show = false;
/* Coordinates of north pole for rotated pole. */
private final ProjectionPointImpl northPole;
/* Y-axis rotation matrix. */
private final double[][] rotY = new double[3][3];
/* Z-axis rotation matrix. */
private final double[][] rotZ = new double[3][3];
/**
* Default Constructor, needed for beans.
*/
public RotatedPole() {
this(0.0, 0.0);
}
/**
* Constructor.
* @param northPoleLat
* @param northPoleLon
*/
public RotatedPole(double northPoleLat, double northPoleLon) {
super("RotatedPole", false);
northPole = new ProjectionPointImpl(northPoleLon, northPoleLat);
buildRotationMatrices();
addParameter(CF.GRID_MAPPING_NAME, CF.ROTATED_LATITUDE_LONGITUDE);
addParameter(CF.GRID_NORTH_POLE_LATITUDE, northPoleLat);
addParameter(CF.GRID_NORTH_POLE_LONGITUDE, northPoleLon);
}
private void buildRotationMatrices() {
double betaRad = 0.;
double gammaRad = 0.;
if (northPole.getY() == 90.)
{
betaRad = 0.;
gammaRad = northPole.getX() * RAD_PER_DEG;
}
else
{
betaRad = -(90. - northPole.getY()) * RAD_PER_DEG;
gammaRad = (northPole.getX() + 180.) * RAD_PER_DEG;
}
double cosBeta = Math.cos(betaRad);
double sinBeta = Math.sin(betaRad);
double cosGamma = Math.cos(gammaRad);
double sinGamma = Math.sin(gammaRad);
rotY[0][0] = cosBeta;
rotY[0][1] = 0.;
rotY[0][2] = -sinBeta;
rotY[1][0] = 0.;
rotY[1][1] = 1.;
rotY[1][2] = 0.;
rotY[2][0] = sinBeta;
rotY[2][1] = 0.;
rotY[2][2] = cosBeta;
rotZ[0][0] = cosGamma;
rotZ[0][1] = sinGamma;
rotZ[0][2] = 0.;
rotZ[1][0] = -sinGamma;
rotZ[1][1] = cosGamma;
rotZ[1][2] = 0.;
rotZ[2][0] = 0.;
rotZ[2][1] = 0.;
rotZ[2][2] = 1.;
}
public ProjectionPointImpl getNorthPole() {
return new ProjectionPointImpl(northPole);
}
@Override
public ProjectionImpl constructCopy() {
ProjectionImpl result = new RotatedPole(northPole.getY(), northPole.getX());
result.setDefaultMapArea(defaultMapArea);
result.setName(name);
return result;
}
public String paramsToString() {
return " northPole= " + northPole;
}
/**
* Transform a "real" longitude and latitude into the rotated longitude (X) and
* rotated latitude (Y).
*/
public ProjectionPoint latLonToProj(LatLonPoint latlon, ProjectionPointImpl destPoint) {
double lat = latlon.getLatitude();
double lon = latlon.getLongitude();
// Lon-lat pair to xyz coordinates on sphere with radius 1
double[] p0 = new double[]
{Math.cos(lat * RAD_PER_DEG) * Math.cos(lon * RAD_PER_DEG),
Math.cos(lat * RAD_PER_DEG) * Math.sin(lon * RAD_PER_DEG),
Math.sin(lat * RAD_PER_DEG)};
// Rotate around Z-axis
double[] p1 = new double[]
{rotZ[0][0] * p0[0] + rotZ[0][1] * p0[1] + rotZ[0][2] * p0[2],
rotZ[1][0] * p0[0] + rotZ[1][1] * p0[1] + rotZ[1][2] * p0[2],
rotZ[2][0] * p0[0] + rotZ[2][1] * p0[1] + rotZ[2][2] * p0[2]};
// Rotate around Y-axis
double[] p2 = new double[]
{rotY[0][0] * p1[0] + rotY[0][1] * p1[1] + rotY[0][2] * p1[2],
rotY[1][0] * p1[0] + rotY[1][1] * p1[1] + rotY[1][2] * p1[2],
rotY[2][0] * p1[0] + rotY[2][1] * p1[1] + rotY[2][2] * p1[2]};
final double lonR = LatLonPointImpl.range180( Math.atan2(p2[1], p2[0]) * DEG_PER_RAD);
//final double lonR = Math.atan2(p2[1], p2[0]) * DEG_PER_RAD;
final double latR = Math.asin(p2[2]) * DEG_PER_RAD;
if (destPoint == null)
destPoint = new ProjectionPointImpl(lonR, latR);
else
destPoint.setLocation(lonR, latR);
if (show)
System.out.println("LatLon= " + latlon+" proj= " + destPoint);
return destPoint;
}
/**
* Transform a rotated longitude (X) and rotated latitude (Y) into a "real"
* longitude-latitude pair.
*/
public LatLonPoint projToLatLon(ProjectionPoint ppt, LatLonPointImpl destPoint) {
// "x" and "y" input for rotated pole coords are actually a lon-lat pair
final double lonR = LatLonPointImpl.range180( ppt.getX()); // LOOK guessing
final double latR = ppt.getY();
// Lon-lat pair to xyz coordinates on sphere with radius 1
double[] p0 = new double[]
{Math.cos(latR * RAD_PER_DEG) * Math.cos(lonR * RAD_PER_DEG),
Math.cos(latR * RAD_PER_DEG) * Math.sin(lonR * RAD_PER_DEG),
Math.sin(latR * RAD_PER_DEG)};
// Inverse rotate around Y-axis (using transpose of Y matrix)
double[] p1 = new double[]
{rotY[0][0] * p0[0] + rotY[1][0] * p0[1] + rotY[2][0] * p0[2],
rotY[0][1] * p0[0] + rotY[1][1] * p0[1] + rotY[2][1] * p0[2],
rotY[0][2] * p0[0] + rotY[1][2] * p0[1] + rotY[2][2] * p0[2]};
// Inverse rotate around Z-axis (using transpose of Z matrix)
double[] p2 = new double[]
{rotZ[0][0] * p1[0] + rotZ[1][0] * p1[1] + rotZ[2][0] * p1[2],
rotZ[0][1] * p1[0] + rotZ[1][1] * p1[1] + rotZ[2][1] * p1[2],
rotZ[0][2] * p1[0] + rotZ[1][2] * p1[1] + rotZ[2][2] * p1[2]};
final double lon = Math.atan2(p2[1], p2[0]) * DEG_PER_RAD;
final double lat = Math.asin(p2[2]) * DEG_PER_RAD;
if (destPoint == null)
destPoint = new LatLonPointImpl(lat, lon);
else
destPoint.set(lat, lon);
if (show)
System.out.println("Proj= " + ppt+" latlon= " + destPoint);
return destPoint;
}
public boolean crossSeam(ProjectionPoint pt1, ProjectionPoint pt2) {
return Math.abs(pt1.getX() - pt2.getX()) > 270.0;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
RotatedPole that = (RotatedPole) o;
return northPole.equals(that.northPole);
}
@Override
public int hashCode() {
return northPole.hashCode();
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy