ucar.nc2.iosp.IndexChunkerTiled Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of netcdf Show documentation
Show all versions of netcdf Show documentation
The NetCDF-Java Library is a Java interface to NetCDF files,
as well as to many other types of scientific data formats.
/*
* Copyright 1998-2009 University Corporation for Atmospheric Research/Unidata
*
* Portions of this software were developed by the Unidata Program at the
* University Corporation for Atmospheric Research.
*
* Access and use of this software shall impose the following obligations
* and understandings on the user. The user is granted the right, without
* any fee or cost, to use, copy, modify, alter, enhance and distribute
* this software, and any derivative works thereof, and its supporting
* documentation for any purpose whatsoever, provided that this entire
* notice appears in all copies of the software, derivative works and
* supporting documentation. Further, UCAR requests that the user credit
* UCAR/Unidata in any publications that result from the use of this
* software or in any product that includes this software. The names UCAR
* and/or Unidata, however, may not be used in any advertising or publicity
* to endorse or promote any products or commercial entity unless specific
* written permission is obtained from UCAR/Unidata. The user also
* understands that UCAR/Unidata is not obligated to provide the user with
* any support, consulting, training or assistance of any kind with regard
* to the use, operation and performance of this software nor to provide
* the user with any updates, revisions, new versions or "bug fixes."
*
* THIS SOFTWARE IS PROVIDED BY UCAR/UNIDATA "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL UCAR/UNIDATA BE LIABLE FOR ANY SPECIAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
* FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package ucar.nc2.iosp;
import ucar.ma2.Index;
import ucar.ma2.Section;
import ucar.ma2.InvalidRangeException;
import ucar.ma2.Range;
import java.util.List;
import java.util.ArrayList;
/**
* Assume that the data is stored divided into sections, described by dataSection. All the data within a dataSection is
* stored contiguously, in a regular layout. Assume dataSection strides must be = 1, that is, the stored data is not strided.
*
* The user asks for some section, wantSection (may have strides).
* For each dataSection that intersects wantSection, a IndexChunkerTiled is created, which
* figures out the optimal access pattern, based on reading contiguous runs of data. Each
* IndexChunkerTiled handles only one dataSection. Typically the cllaing program loops over
* all dataSections that intersect the wanted section.
*
* Both dataSection and wantSection refer to the variable's overall shape.
*
* @author caron
* @since Jan 9, 2008
*/
public class IndexChunkerTiled {
private List dimList = new ArrayList();
private IndexLong dataIndex; // Index into the data source section - used to calculate chunk.filePos
private Index resultIndex; // Index into the data result section - used to calculate chunk.startElem
private IndexChunker.Chunk chunk; // gets returned on next().
private int nelems; // number of elements to read at one time
private long total, done;
private int startDestElem; // the offset in the result Array of this piece of it
private int startSrcElem; // the offset in the source Array of this piece of it
private boolean debug = false, debugMerge = false, debugDetail = false, debugNext = false, debugStartingElems = false;
/**
* Constructor.
* Assume varSection.intersects(wantSection).
*
* @param dataSection the section of data we actually have. must have all ranges with stride = 1.
* @param wantSection the wanted section of data, it will be intersected with dataSection.
* dataSection.intersects(wantSection) must be true
* @throws InvalidRangeException if ranges are malformed
*/
public IndexChunkerTiled(Section dataSection, Section wantSection) throws InvalidRangeException {
this.done = 0;
// LOOK - need test for "all" common case
// The actual wanted data we can get from this section
Section intersect = dataSection.intersect(wantSection);
this.total = intersect.computeSize();
if (total <= 0) {
System.out.println("hey");
}
assert total > 0;
int varRank = intersect.getRank();
// create the List
// Section shifted = intersect.shiftOrigin(dataSection); // want reletive to dataSection
int wantStride = 1;
int dataStride = 1;
for (int ii = varRank - 1; ii >= 0; ii--) {
Range dr = dataSection.getRange(ii);
Range wr = wantSection.getRange(ii);
Range ir = intersect.getRange(ii);
dimList.add(new Dim(dr, wr, ir, dataStride, wantStride)); // note reversed : fastest first
dataStride *= dr.length();
wantStride *= wr.length();
}
/* the origin can be handled by adding to the startPos
long fileOffset = 0; // offset in file
for (Dim dim : dimList) {
int d = dim.intersect.first() - dim.data.first();
if (d > 0) fileOffset += elemSize * dim.dataStride * d;
}
this.startPos = startFilePos + fileOffset; */
// the offset in the result Array of this piece of it
startDestElem = wantSection.offset( intersect);
startSrcElem = dataSection.offset( intersect);
if (debugStartingElems)
System.out.println(" startDestElem="+ startDestElem + " startSrcElem="+ startSrcElem);
/* for (Dim dim : dimList) {
int d = dim.intersect.first() - dim.want.first();
if (d > 0) startElem += dim.wantStride * d;
} */
// LOOK : not merging inner dimensions
/* merge contiguous inner dimensions for efficiency
if (debugMerge) System.out.println("RegularSectionLayout= " + this);
// count how many merge dimensions
int merge = 0;
for (int i = 0; i < dimList.size()-1; i++) {
Dim elem = dimList.get(i);
if (elem.want.stride() != 1) break;
if (i > 0) {
Dim prevElem = dimList.get(i-1);
if (prevElem.want.length() != prevElem.intersect.length()) break;
if (prevElem.data.length() != prevElem.intersect.length()) break;
}
merge++;
}
// merge the dimensions
for (int i = 0; i < merge; i++) {
Dim elem = dimList.get(i);
Dim elem2 = dimList.get(i + 1);
elem2.dataStride *= elem.dataStride;
elem2.wantStride *= elem.wantStride;
if (debugMerge) System.out.println(" ----" + this);
}
// delete merged
dimList = dimList.subList(merge, varRank); */
// how many elements can we do at a time?
if (varRank == 0)
this.nelems = 1;
else {
Dim innerDim = dimList.get(0);
this.nelems = innerDim.ncontigElements;
if (innerDim.ncontigElements > 1) {
innerDim.wantNelems = 1; // 1 wantIndex increment = nelems
innerDim.wantStride = innerDim.ncontigElements;
}
}
// we will use Index objects to keep track of the chunks
int rank = dimList.size();
long[] dataStrides = new long[rank];
int[] resultStrides = new int[rank];
int[] shape = new int[rank];
for (int i = 0; i < dimList.size(); i++) { // reverse to slowest first
Dim dim = dimList.get(i);
dataStrides[rank - i - 1] = dim.dataStride * dim.want.stride();
resultStrides[rank - i - 1] = dim.wantStride; // * dim.want.stride();
shape[rank - i - 1] = dim.wantNelems;
}
if (debugDetail) {
IndexChunker.printa(" indexShape=", shape);
IndexChunker.printl(" dataStrides=", dataStrides);
IndexChunker.printa(" wantStride=", resultStrides);
System.out.println(" indexChunks=" + Index.computeSize(shape));
}
dataIndex = new IndexLong(shape, dataStrides);
resultIndex = new Index(shape, resultStrides);
if (debugDetail) {
System.out.println(" dataIndex="+ dataIndex.toString());
System.out.println(" resultIndex="+ resultIndex.toStringDebug());
}
// sanity checks
long nchunks = Index.computeSize(shape);
assert nchunks * nelems == total;
if (debug) {
System.out.println("RegularSectionLayout total = "+total+" nchunks= "+nchunks+" nelems= "+nelems+
" dataSection= " + dataSection + " wantSection= " + wantSection+ " intersect= " + intersect+ this);
}
}
private class Dim {
Range data; // Range we got
Range want; // Range we want
Range intersect; // Range we want
int dataStride; // stride in the data array
int wantStride; // stride in the want array
int wantNelems;
int ncontigElements;
Dim(Range data, Range want, Range intersect, int dataStride, int wantStride) {
//assert want.length() <= maxSize : want.last() +" > "+ maxSize ;
this.data = data;
this.want = want;
this.intersect = intersect;
this.dataStride = dataStride;
this.wantStride = wantStride;
this.ncontigElements = intersect.stride() == 1 ? intersect.length() : 1;
this.wantNelems = intersect.length();
if (debugMerge) System.out.println("Dim="+this);
}
public String toString() {
return " data = "+data+ " want = "+want+ " intersect = "+intersect+ " ncontigElements = "+ncontigElements;
}
} // Dim
// Indexer methods
public long getTotalNelems() {
return total;
}
public boolean hasNext() {
return done < total;
}
public IndexChunker.Chunk next() {
if (chunk == null) {
chunk = new IndexChunker.Chunk(0, nelems, startDestElem);
} else {
dataIndex.incr();
resultIndex.incr();
}
// Set the current element's index from the start of the data array
chunk.setSrcElem(startSrcElem + dataIndex.currentElement());
// Set the current element's index from the start of the result array
chunk.setDestElem(startDestElem + resultIndex.currentElement());
if (debugNext)
System.out.println(" chunk: " + chunk);
if (debugDetail) {
System.out.println(" dataIndex: " + dataIndex);
System.out.println(" wantIndex: " + resultIndex);
}
done += nelems;
return chunk;
}
////////////////////
public String toString() {
StringBuilder sbuff = new StringBuilder();
for (int i = 0; i < dimList.size(); i++) {
Dim elem = dimList.get(i);
sbuff.append("\n");
sbuff.append(elem);
}
return sbuff.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy