All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.ucla.sspace.clustering.StreamingKMeans Maven / Gradle / Ivy

Go to download

The S-Space Package is a collection of algorithms for building Semantic Spaces as well as a highly-scalable library for designing new distributional semantics algorithms. Distributional algorithms process text corpora and represent the semantic for words as high dimensional feature vectors. This package also includes matrices, vectors, and numerous clustering algorithms. These approaches are known by many names, such as word spaces, semantic spaces, or distributed semantics and rest upon the Distributional Hypothesis: words that appear in similar contexts have similar meanings.

The newest version!
/*
 * Copyright 2010 Keith Stevens 
 *
 * This file is part of the S-Space package and is covered under the terms and
 * conditions therein.
 *
 * The S-Space package is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation and distributed hereunder to you.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND NO REPRESENTATIONS OR WARRANTIES,
 * EXPRESS OR IMPLIED ARE MADE.  BY WAY OF EXAMPLE, BUT NOT LIMITATION, WE MAKE
 * NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY
 * PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION
 * WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
 * RIGHTS.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see .
 */

package edu.ucla.sspace.clustering;

import edu.ucla.sspace.common.Similarity;

import edu.ucla.sspace.util.Generator;
import edu.ucla.sspace.util.Properties;

import edu.ucla.sspace.matrix.Matrices;
import edu.ucla.sspace.matrix.Matrix;
import edu.ucla.sspace.matrix.SparseMatrix;

import edu.ucla.sspace.vector.DoubleVector;
import edu.ucla.sspace.vector.SparseDoubleVector;
import edu.ucla.sspace.vector.Vectors;

import java.util.ArrayList;
import java.util.List;

import java.util.concurrent.CopyOnWriteArrayList;

import java.util.concurrent.atomic.AtomicInteger;


/**
 * An implementation of a simple, highly accurate streaming K Means algorithm.
 * It is based on a the following paper:
 *
 * 
    *
  • Braverman, V., Meyerson, A., Ostrovsky, R., Roytman, A., Shindler, M., * and Tagiku, B. Streaming k-means on Well-Clusterable Data. In Proceedings * of SODA. 2011, 26-40. Available online here *
  • *
* *

* * A key feature of this algorithm is that only one pass is made through a data * set. It is intended for applications where the total number of data points * is known, but can be used if a rough estimate of the data points is known. * This algorithm periodically reformulates the centroids by performing an * batch form of K Means over the centroids, and potentially a sample of data * points assigned to each centroid, clearing out all centroids, and then * treating the old centroids as new heavily weighted data points. This process * happens automatically when one of several thresholds are passed. * * @author Keith Stevens */ public class StreamingKMeans implements Generator> { /** * A property prefix. */ private static final String PROPERTY_PREFIX = "edu.ucla.sspace.cluster.StreamingKMeans"; /** * An estimate of the total number of data points that will be clustered. */ public static final String NUM_POINTS_PROPERTY = PROPERTY_PREFIX + ".maxPoints"; /** * An alpha value, see page 6 in the paper for details. */ public static final String ALPHA_PROPERTY = PROPERTY_PREFIX + ".alpha"; public static final String COFL_PROPERTY = PROPERTY_PREFIX + ".cofl"; public static final String KOFL_PROPERTY = PROPERTY_PREFIX + ".kofl"; /** * A beta value, see page 6 in the paper for details. */ public static final String BETA_PROPERTY = PROPERTY_PREFIX + ".beta"; /** * A gamma value, see page 6 in the paper for details. */ public static final String GAMMA_PROPERTY = PROPERTY_PREFIX + ".gamma"; /** * The default number of clusters. */ public static final int DEFAULT_NUM_CLUSTERS = 2; /** * The default number of clusters. */ public static final int DEFAULT_NUM_POINTS = 1000; /** * The default alpha value. */ public static final double DEFAULT_ALPHA = 2.0; public static final double DEFAULT_COFL = 2.0; public static final double DEFAULT_KOFL = 2.0; /** * The default beta value. */ public static final double DEFAULT_BETA = 216.25; /** * The default gamma value. */ public static final double DEFAULT_GAMMA = 169/4.0; /** * The maximum number of clusters permitted. */ private final int numClusters; /** * The estimated number of data points. */ private final double logNumPoints; /** * The alpha constant. */ private final double alpha; private final double cofl; private final double kofl; /** * The beta constant. */ private final double beta; /** * The gamma constant. */ private final double gamma; /** * Creates a new generator using the system properties. */ public StreamingKMeans() { this(new Properties()); } /** * Creates a new generator using the given properties. */ public StreamingKMeans(Properties props) { numClusters = props.getProperty( OnlineClustering.NUM_CLUSTERS_PROPERTY, DEFAULT_NUM_CLUSTERS); int numPoints = props.getProperty( NUM_POINTS_PROPERTY, DEFAULT_NUM_POINTS); logNumPoints = Math.log(numPoints) / Math.log(2); alpha = props.getProperty(ALPHA_PROPERTY, DEFAULT_ALPHA); cofl = props.getProperty(COFL_PROPERTY, DEFAULT_COFL); kofl = props.getProperty(KOFL_PROPERTY, DEFAULT_KOFL); beta = 2 * alpha * alpha * cofl + 2 * alpha; gamma = Math.max( 4*alpha*alpha*alpha*cofl*cofl + 2*alpha*alpha*cofl, beta*kofl+ 1); } /** * Generates a new instance of a {@code StreamingClustering} based on the * values used to construct this generator. */ public OnlineClustering generate() { return new StreamingKMeansClustering( alpha, beta, gamma, numClusters, logNumPoints); } /** * Returns "StreamingKMeans" */ public String toString() { return "StreamingKMeans"; } /** * The internal {@link OnlineClustering} implementation. */ public class StreamingKMeansClustering implements OnlineClustering { /** * A list of the first K data points. After the first K data points * have been observed, this list is set to {@code null} and never * re-used. */ private List firstKPoints; /** * The scaled clustering cost. */ private double LCost; /** * The cost of creating a new cluster. */ private double facilityCost; /** * The total clustering cost. */ private double totalCost; /** * The alpha constant used for evaluating the clustering cost and number * of clusters. */ private final double alpha; /** * The beta constant used for evaluating the clustering cost and number * of clusters. */ private final double beta; /** * The gamma constant used for evaluating the clustering cost and number * of clusters. */ private final double gamma; /** * An estimate of the number of data points that will be observed. This * is used for evaluating the clustering cost and number of clusters. */ private final double logNumPoints; /** * The number of clusters desired. */ private final int numClusters; /** * The set of clusters. */ private List> facilities; /** * A counter for generating item identifiers. */ private final AtomicInteger idCounter; /** * The maximum total clustering cost, based on the constant values. */ private final double costThreshold; /** * The maximum number of clusters, based on the constant values. */ private final double facilityThreshold; /** * Creates a new instance of online KMeans clustering. */ public StreamingKMeansClustering(double alpha, double beta, double gamma, int numClusters, double logNumPoints) { // Create initial data structures. facilities = new CopyOnWriteArrayList>(); idCounter = new AtomicInteger(1); firstKPoints = new ArrayList(numClusters); // Save the constants. this.numClusters = numClusters; this.alpha = alpha; this.beta = beta; this.gamma = gamma; this.logNumPoints = logNumPoints; // Precompute the thresholds, which are constants as well. costThreshold = gamma; facilityThreshold = (1+logNumPoints) * numClusters; LCost = 1; facilityCost = LCost / (numClusters * (1 + logNumPoints)); totalCost = 0; } /** * {@inheritDoc} */ public synchronized int addVector(T value) { // Get the id of the new data point. int id = idCounter.getAndAdd(1); // Try to assign the data point to a cluster. If assigning the data // point causes either the cost threshold or number of clusters // threshold to be surpassed, try reclustering the centroids and // sampled data points, then cluster the data point again. This may // take several iterations since the creation of new clusters is // done at random. if (addDataPoint(value, id) < 0) { // Reassign the centroid of each cluster. List> clusters = facilities; facilities = new ArrayList>(); LCost *= beta; facilityCost = LCost/(numClusters*(1 + logNumPoints)); // When reassigning each centroid, copy over the id of assigned // data points to the new cluster. for (Cluster cluster : clusters) { int assignment = addDataPoint(cluster.centroid(), 0); Cluster newCluster = facilities.get(assignment); newCluster.dataPointIds().or(cluster.dataPointIds()); } } return id; } /** * Assigns {@code value} to a cluster, or makes a new cluster with * {@code value} as the centroid, and returns the id of the cluster. * {@code -1} is returned if the data point cannot be assigned without * violating either the facility threshold or the cost threshold. * * @param value The value to cluster * @param id The unique identifier for {@code id} */ private int addDataPoint(T value, int id) { // Find the cluster that is closest to value. double bestCost = Double.MAX_VALUE; int bestClusterId = 0; Cluster bestCluster = null; int i = 0; for (Cluster cluster : facilities) { double cost = cluster.compareWithVector(value); // Reverse the scale so that a high similarity corresponds to a // low cost and a low similarity corresponds to a high cost, but // is still from a 0 to 1 range. cost = -1*cost + 1; if (cost < bestCost) { bestCost = cost; bestCluster = cluster; bestClusterId = i; } ++i; } // Determine whether or not a new facility, or cluster, should be // generated for this data point. This based on the total cost of // serving this data point and the cost of creating a new // facility. double makeFacilityProb = Math.min(bestCost / facilityCost, 1); boolean makeFacility = facilities.size() == 0 || Math.random() < makeFacilityProb; if (makeFacility) { Cluster newCluster = new CentroidCluster( Vectors.instanceOf(value)); newCluster.addVector(value, (id > 0) ? id : -1); facilities.add(newCluster); bestClusterId = facilities.size() - 1; } else { bestCluster.addVector(value, (id > 0) ? id : -1); totalCost += bestCost; } if (id != 0) { if (totalCost > gamma * LCost) return -1; if (facilities.size() >= facilityThreshold) return -2; } return bestClusterId; } /** * {@inheritDoc} */ public Cluster getCluster(int clusterIndex) { if (facilities.size() <= clusterIndex || clusterIndex < 0) throw new ArrayIndexOutOfBoundsException(); return facilities.get(clusterIndex); } /** * {@inheritDoc} */ public List> getClusters() { return facilities; } /** * {@inheritDoc} */ public synchronized int size() { return facilities.size(); } /** * Returns a string describing this {@code ClusterMap}. */ public String toString() { return "StreamingKMeansClustering-numClusters" + numClusters; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy