All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.ucla.sspace.common.VectorMapSemanticSpace Maven / Gradle / Ivy

Go to download

The S-Space Package is a collection of algorithms for building Semantic Spaces as well as a highly-scalable library for designing new distributional semantics algorithms. Distributional algorithms process text corpora and represent the semantic for words as high dimensional feature vectors. This package also includes matrices, vectors, and numerous clustering algorithms. These approaches are known by many names, such as word spaces, semantic spaces, or distributed semantics and rest upon the Distributional Hypothesis: words that appear in similar contexts have similar meanings.

The newest version!
/*
 * Copyright 2009 Keith Stevens 
 *
 * This file is part of the S-Space package and is covered under the terms and
 * conditions therein.
 *
 * The S-Space package is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation and distributed hereunder to you.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND NO REPRESENTATIONS OR WARRANTIES,
 * EXPRESS OR IMPLIED ARE MADE.  BY WAY OF EXAMPLE, BUT NOT LIMITATION, WE MAKE
 * NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY
 * PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION
 * WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
 * RIGHTS.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see .
 */

package edu.ucla.sspace.common;

import edu.ucla.sspace.common.SemanticSpaceIO.SSpaceFormat;

import edu.ucla.sspace.matrix.ArrayMatrix;
import edu.ucla.sspace.matrix.Matrices;
import edu.ucla.sspace.matrix.Matrix;

import edu.ucla.sspace.vector.CompactSparseVector;
import edu.ucla.sspace.vector.Vector;
import edu.ucla.sspace.vector.Vectors;

import edu.ucla.sspace.util.IntegerMap;

import java.io.BufferedInputStream;
import java.io.BufferedReader;
import java.io.DataInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileReader;
import java.io.IOError;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;

import java.util.Arrays;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Properties;
import java.util.Set;

import java.util.logging.Level;
import java.util.logging.Logger;


/**
 * This {@link SemanticSpace} wraps a {@link Map} from strings to {@link
 * Vector}s.  Both {@link #processDocument} and {@link #processSpace} are
 * no-ops.
 *
 * @author Keith Stevens
 */
public class VectorMapSemanticSpace 
        implements SemanticSpace, java.io.Serializable {

    private static final long serialVersionUID = 1L;

    private static final Logger LOGGER = 
        Logger.getLogger(VectorMapSemanticSpace.class.getName());

    /**
     * The mapping from words to their semantic vectors
     */
    private final Map wordSpace;

    /**
     * The total number of dimensions in this word space.
     */
    private final int dimensions;

    /**
     * The name of this semantic space.
     */
    private String spaceName;    

    /**
     * Creates a new {@link VectorMapSemanticSpace} around the pre-existing
     * {@link Map}.
     */
    public VectorMapSemanticSpace(Map wordSpace,
                                  String spaceName,
                                  int dimensions) {
        if (wordSpace == null)
            throw new IllegalArgumentException(
                    "the wordSpace must be non-null");
        if (spaceName == null)
            throw new IllegalArgumentException(
                    "the spaceName must be non-null");
        if (dimensions <= 0)
            throw new IllegalArgumentException(
                    "the VectorMapSemanticSpace must have more " +
                    "than 0 dimensions");

        this.wordSpace = wordSpace;
        this.dimensions = dimensions;
        this.spaceName = spaceName;
    }

    /**
     * {@inheritDoc}
     */
    public Set getWords() {
        return Collections.unmodifiableSet(wordSpace.keySet());
    }
  
    /**
     * {@inheritDoc}
     */
    public T getVector(String term) {
        return wordSpace.get(term);
    }

    /**
     * {@inheritDoc}
     */
    public String getSpaceName() {
        return spaceName;
    }

    /**
     * {@inheritDoc}
     */
    public int getVectorLength() {
        return dimensions;
    }

    /**
     * A no-op
     */
    public void processDocument(BufferedReader document) { 
    }

    /**
     * A no-op
     */
    public void processSpace(Properties props) { 
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy