edu.ucla.sspace.index.DefaultPermutationFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sspace-wordsi Show documentation
Show all versions of sspace-wordsi Show documentation
The S-Space Package is a collection of algorithms for building
Semantic Spaces as well as a highly-scalable library for designing new
distributional semantics algorithms. Distributional algorithms process text
corpora and represent the semantic for words as high dimensional feature
vectors. This package also includes matrices, vectors, and numerous
clustering algorithms. These approaches are known by many names, such as
word spaces, semantic spaces, or distributed semantics and rest upon the
Distributional Hypothesis: words that appear in similar contexts have
similar meanings.
The newest version!
/*
* Copyright 2009 David Jurgens
*
* This file is part of the S-Space package and is covered under the terms and
* conditions therein.
*
* The S-Space package is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation and distributed hereunder to you.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND NO REPRESENTATIONS OR WARRANTIES,
* EXPRESS OR IMPLIED ARE MADE. BY WAY OF EXAMPLE, BUT NOT LIMITATION, WE MAKE
* NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY
* PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION
* WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
* RIGHTS.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package edu.ucla.sspace.index;
import edu.ucla.sspace.vector.SparseVector;
import edu.ucla.sspace.vector.TernaryVector;
import edu.ucla.sspace.vector.Vector;
import edu.ucla.sspace.vector.Vectors;
import java.io.Serializable;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Random;
/**
* A generic permutation function. This class precomputes the permutations as
* necessary and only requires {@code O(k)} time to compute a single
* permutation, where {@code k} is the number of non-zero elements in the {@code
* Vector}.
*
* @author David Jurgens
*/
public class DefaultPermutationFunction
implements PermutationFunction, Serializable {
private static final long serialVersionUID = 1L;
private static final Random RANDOM = RandomIndexVectorGenerator.RANDOM;
/**
* A mapping from a distance to a corresponding permutation.
*/
private final Map permutationToReordering;
/**
* Creates an empty {@code DefaultPermutationFunction}.
*/
public DefaultPermutationFunction() {
permutationToReordering = new HashMap();
}
/**
* Returns the bijective mapping for each integer in the form of an array
* based on the the current exponent of the permutation.
*
* @param exponent the exponent for the current permutation
* @param dimensions the number of dimenensions in the index vector being
* permuted
*
* @return the mapping for each index to its new index
*/
private Function getFunction(int exponent, int dimensions) {
// Base case: we keep the same ordering. Create this function on the
// fly to save space, since the base case should rarely get called.
if (exponent == 0) {
int[] func = new int[dimensions];
for (int i = 0; i < dimensions; ++i) {
func[i] = i;
}
return new Function(func, func);
}
exponent = Math.abs(exponent);
Function function = permutationToReordering.get(exponent);
// If there wasn't a funcion for that exponent then created one by
// permuting the lower exponents value. Use recursion to access the
// lower exponents value to ensure that any non-existent lower-exponent
// functions are created along the way.
if (function == null) {
synchronized (this) {
function = permutationToReordering.get(exponent);
if (function == null) {
// lookup the prior function
int priorExponent = exponent - 1;
Function priorFunc =
getFunction(priorExponent, dimensions);
// convert to an object based array to use
// Collections.shuffle()
Integer[] objFunc = new Integer[dimensions];
for (int i = 0; i < dimensions; ++i) {
objFunc[i] = Integer.valueOf(priorFunc.forward[i]);
}
// then shuffle it to get a new permutation
java.util.List list = Arrays.asList(objFunc);
Collections.shuffle(list, RANDOM);
// convert back to a primitive array
int[] forwardMapping = new int[dimensions];
int[] backwardMapping = new int[dimensions];
for (int i = 0; i < dimensions; ++i) {
forwardMapping[i] = objFunc[i].intValue();
backwardMapping[objFunc[i].intValue()] = i;
}
function = new Function(forwardMapping, backwardMapping);
// store it in the function map for later usee
permutationToReordering.put(exponent, function);
}
}
}
return function;
}
/**
* {@inheritDoc}
*/
public Vector permute(Vector v , int numPermutations) {
if (v instanceof TernaryVector)
return permute((TernaryVector) v, numPermutations, v.length());
Vector result = Vectors.instanceOf(v);
int[] dimensions = null;
int[] oldDims = null;
if (v instanceof SparseVector) {
oldDims = ((SparseVector) v).getNonZeroIndices();
dimensions = Arrays.copyOf(oldDims, oldDims.length);
} else {
dimensions = new int[v.length()];
for (int i = 0; i < v.length(); ++i)
dimensions[i] = i;
}
boolean isInverse = numPermutations < 0;
// NB: because we use the signum and !=, this loop will work for both
// positive and negative numbers of permutations
int totalPermutations = Math.abs(numPermutations);
for (int count = 1; count <= totalPermutations; ++count) {
// load the reordering funcion for this iteration of the permutation
Function function = getFunction(count, v.length());
// based on whether this is an inverse permutation, select whether
// to use the forward or backwards mapping.
int[] reordering = (isInverse)
? function.backward : function.forward;
oldDims = Arrays.copyOf(dimensions, dimensions.length);
for (int i = 0; i < oldDims.length; ++i) {
dimensions[i] = reordering[oldDims[i]];
}
}
for (int d : dimensions)
result.set(d, v.getValue(d));
return result;
}
/**
* An optimized instance of permute for TernaryVectors. In this case, only
* the positive and negative values are permuted, and a {@code
* TernaryVector} is returned.
*/
private Vector permute(TernaryVector v, int numPermutations, int length) {
int[] oldPos = v.positiveDimensions();
int[] oldNeg = v.negativeDimensions();
// create new arrays to hold the permuted locations of the vectors's
// positive and negative values.
//
// NB: we use a copy here to ensure that the function works for the 0
// permutation (i.e. effectively a no-op);
int[] positive = Arrays.copyOf(oldPos, oldPos.length);
int[] negative = Arrays.copyOf(oldNeg, oldNeg.length);
boolean isInverse = numPermutations < 0;
// NB: because we use the signum and !=, this loop will work for both
// positive and negative numbers of permutations
int totalPermutations = Math.abs(numPermutations);
for (int count = 1; count <= totalPermutations; ++count) {
// load the reordering funcion for this iteration of the permutation
Function function = getFunction(count, length);
// based on whether this is an inverse permutation, select whether
// to use the forward or backwards mapping.
int[] reordering = (isInverse)
? function.backward : function.forward;
// create a copy of the previous permuted values for positive and
// negative. We need this array because the permutation cannot be
// done in place
oldPos = Arrays.copyOf(positive, positive.length);
oldNeg = Arrays.copyOf(negative, negative.length);
// The reordering array specifies for index i the positive of i in
// the permuted array. Since the positive and negative indices are
// the only non-zero indicies, we can simply create new arrays for
// them of the same length and then set their new positions based on
// the values in the reordering array.
for (int i = 0; i < oldPos.length; ++i) {
positive[i] = reordering[oldPos[i]];
}
for (int i = 0; i < oldNeg.length; ++i) {
negative[i] = reordering[oldNeg[i]];
}
}
return new TernaryVector(length, positive, negative);
}
/**
* Returns the name of this class
*/
public String toString() {
return "DefaultPermutationFunction";
}
/**
* A bijective, invertible mapping between indices.
*/
private static class Function implements Serializable {
private static final long serialVersionUID = 1L;
private final int[] forward;
private final int[] backward;
public Function(int[] forward, int[] backward) {
this.forward = forward;
this.backward = backward;
}
}
}