All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.ucla.sspace.mains.GenericWordsiMain Maven / Gradle / Ivy

Go to download

The S-Space Package is a collection of algorithms for building Semantic Spaces as well as a highly-scalable library for designing new distributional semantics algorithms. Distributional algorithms process text corpora and represent the semantic for words as high dimensional feature vectors. This package also includes matrices, vectors, and numerous clustering algorithms. These approaches are known by many names, such as word spaces, semantic spaces, or distributed semantics and rest upon the Distributional Hypothesis: words that appear in similar contexts have similar meanings.

The newest version!
/*
 * Copyright (c) 2010, Lawrence Livermore National Security, LLC. Produced at
 * the Lawrence Livermore National Laboratory. Written by Keith Stevens,
 * [email protected] OCEC-10-073 All rights reserved. 
 *
 * This file is part of the C-Cat package and is covered under the terms and
 * conditions therein.
 *
 * The S-Space package is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation and distributed hereunder to you.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND NO REPRESENTATIONS OR WARRANTIES,
 * EXPRESS OR IMPLIED ARE MADE.  BY WAY OF EXAMPLE, BUT NOT LIMITATION, WE MAKE
 * NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY
 * PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION
 * WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
 * RIGHTS.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see .
 */

package edu.ucla.sspace.mains;

import edu.ucla.sspace.common.ArgOptions;
import edu.ucla.sspace.common.SemanticSpace;
import edu.ucla.sspace.common.SemanticSpaceIO;

import edu.ucla.sspace.clustering.Clustering;
import edu.ucla.sspace.clustering.OnlineClustering;

import edu.ucla.sspace.text.Document;

import edu.ucla.sspace.util.Generator;
import edu.ucla.sspace.util.ReflectionUtil;

import edu.ucla.sspace.vector.SparseDoubleVector;

import edu.ucla.sspace.wordsi.AssignmentReporter;
import edu.ucla.sspace.wordsi.ContextExtractor;
import edu.ucla.sspace.wordsi.ContextGenerator;
import edu.ucla.sspace.wordsi.EvaluationWordsi;
import edu.ucla.sspace.wordsi.GeneralContextExtractor;
import edu.ucla.sspace.wordsi.StreamingWordsi;
import edu.ucla.sspace.wordsi.WaitingWordsi;

import edu.ucla.sspace.wordsi.psd.PseudoWordContextExtractor;
import edu.ucla.sspace.wordsi.psd.PseudoWordReporter;
import edu.ucla.sspace.wordsi.semeval.SemEvalContextExtractor;
import edu.ucla.sspace.wordsi.semeval.SemEvalReporter;

import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileReader;
import java.io.IOError;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;

import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;


/**
 * A base implementation for {@link Wordsi} executables.  This class provides
 * base arguments that nearly all {@link Wordsi} executables will require, along
 * with basic processing for those arguments.
 *
 * 

* * This class provides access to three different word sense modes : online * clustering, offline clustering, and an evaluation mode. For the two * clustering modes, word senses are generated by clustering individual context * vectors. The first mode uses {@link StreamingWordsi} and the latter mode * uses {@link WaitingWordsi}. The third mode assumes that the word sense have * already been learned and are fixed. Individual contexts are labeled with the * most similar word sense. * *

* * This class provides access to two evaluation modes: Pseudo Word * Discrimination and the SenseEval/SemEval evaluation. When training a {@link * Wordsi} model for a pseudo word task, the {@code -e} option should be set * with the "pseudoWord} argument. The {@code -P} option should be set so that * {@link Wordsi} knows which words form pseudo words. {@link Wordsi} will * generate a report that specifies how many times each core word in a pseudo * word was assigned to a word sense for the pseudo word. When running in * evaluation mode, the {@code -e} option must be set. * *

* * Since {@link Wordsi} instances will need to reuse features during training * and testing, the {@code --Save} and {@code --Load} options are provided. * {@code --Save} will store any data structures that are required for * generating context vectors. {@code --Load} will load these same data * structures from disk and re-use them. In general, {@code --Save} should be * used during training and {@code --Load} should be used during testing. * Different {@link Wordsi} executables will serialize different data * structures, but these will generally be a mapping from strings to some other * data type. * *

* * {@code GenericMain} provides the core options used by this base executible. * This class provides the following addition options: * *
    *
  • Required (one of): *
      * {@code -s}, {@code --streamingClustering=CLASSNAME} Specifies the * streaming clustering algorithm to use for forming word senses. * * {@code -b}, {@code --batchClustering=CLASSNAME} Specifies the batch * clustering algorithm to use for forming word senses. * * {@code -e}, {@code --evaluationClustering=FILE} Specifies a trained * Wordsi semantic space to be used for evaluation. When set, one of the * Evaluation Type arguments must be set. *
    *
  • * *
  • Evaluation Type *
      * {@code -P}, {@code --pseudoWordEvaluation=FILENAME} Specifies a * mapping from raw tokens to their pseudo word token. Only the raw tokens * in this mapping will be represented in the {@link Wordsi} space. A * {@link PseudoWordReporter} will be generated for these pseudo words. * * {@code -E}, {@code --semEvalEvaluation=STRING} Signifies that the * data files are in the SemEval format and that only test instance words * should be represented in the Wordsi space. Each line must correspond to * an instance context and the focus word must be precceded by the token * given as the argument to this option. *
    *
  • * *
  • Optional *
      * {@code -a}, {@code --acceptedWords=FILENAME} Specifies the set of * words which should be represented by Wordsi. (Default: all words). * * {@code -c}, {@code --clusters} Specifies the desired number of * clusters, or word senses. (Default: 0). * * {@code -w}, {@code --windowSize} Specifies the number of words, in * one direction, that form a valid context. For example, a window size of * 5 means that up to 5 words before and after a focus word are used to form * the context. (Default: 5). * *
    *
  • * *
  • Serialization *
      * {@code -S}, {@code --save} Specfies a file to which all files * needed to generate context vectors will be serialized. * * {@code -L}, {@code --load} Specfies a file from which all files * needed to generate context vectors will be deserialized. *
    *
  • *
* * @author Keith Stevens */ public abstract class GenericWordsiMain extends GenericMain { private ObjectOutputStream saveStream = null; private ObjectInputStream loadStream = null; /** * {@inheritDoc} */ protected void addExtraOptions(ArgOptions options) { // Remove some crufty options. options.removeOption('Z'); options.removeOption('X'); options.removeOption('o'); options.removeOption('w'); // Set the three runtime mode arguments. options.addOption('s', "streamingClustering", "Specifies the streaming clustering algorithm to " + "use for forming word senses", true, "CLASSNAME", "Required (one of)"); options.addOption('b', "batchClustering", "Specifies the batch clustering algorithm to " + "use for forming word senses", true, "CLASSNAME", "Required (one of)"); options.addOption('e', "evaluationClustering", "Specifies a trained Wordsi semantic space to be " + "used for evaluation. When set, one of the " + "Evaluation Type arguments must be set", true, "", "Required (one of)"); // Set the evaluation type arguments. options.addOption('P', "pseudoWordEvaluation", "Specifies a mapping from raw tokens to their " + "pseudo word token. Only the raw tokens in this " + "mapping will be represented in the Wordsi space. " + "A PseudoWordReport will be generated for these " + "pseudo words. This overrides the -a option", true, "FILENAME", "Evaluation Type"); options.addOption('E', "semEvalEvaluation", "Signifies that the data files are in the SemEval " + "format and that only test instance words should " + "be represented in the Wordsi space. Each line " + "must correspond to an instance context and the " + "focus word must be precceded by the token given " + "as the argument to this option.", true, "STRING", "Evaluation Type"); options.addOption('N', "wordlistEvaluation", "Learned word senses are assumed to be related to " + "the senses in for other words in the " + "acceptedWords list. This evaluation will track " + "the headers for documents which should mark " + "whether or not the focus words are being used " + "with their common sense.", false, null, "Evaluation Type"); // Set the optional arguments. options.addOption('a', "acceptedWords", "Specifies the set of words which should be " + "represented by Wordsi. (Default: all words)", true, "FILENAME", "Optional"); options.addOption('c', "clusters", "Specifies the desired number of clusters, or " + "word senses. (Default: 0)", true, "INT", "Optional"); options.addOption('W', "windowSize", "Specifies the number of words, in one direction, " + "that form a valid context. For example, a window " + "size of 5 means that up to 5 words before and " + "after a focus word are used to form the context. " + "(Default: 5)", true, "INT", "Optional"); options.addOption('h', "useHeaderToken", "Set to true if the first token in a context " + "should be treated as a document header. Note " + "that this is only used when -E and -P are not " + "used.", false, null, "Optional"); // Set the serialization arguments. options.addOption('S', "save", "Specfies a file to which all files needed to " + "generate context vectors will be serialized", true, "FILENAME", "Serialization"); options.addOption('L', "load", "Specfies a file from which all files needed to " + "generate context vectors will be deserialized", true, "FILENAME", "Serialization"); } /** * Returns a {@link ContextExtractor}, which will be responsible for * creating context vectors for documents. */ abstract protected ContextExtractor getExtractor(); /** * Returns a set of strings that the {@link Wordsi} implementations should * represent, or {@code null}, which signifies that all words should be * represented. */ protected Set getAcceptedWords() { if (!argOptions.hasOption('a')) return null; try { Set acceptedWords = new HashSet(); BufferedReader br = new BufferedReader(new FileReader( argOptions.getStringOption('a'))); for (String line = null; (line = br.readLine()) != null; ) acceptedWords.add(line.trim().toLowerCase()); return acceptedWords; } catch (IOException ioe) { throw new IOError(ioe); } } /** * Returns a mapping from real tokens to their pseudo word tokens, or {@code * null} if the {@code -P} option is not specified. */ protected Map getPseudoWordMap() { if (!argOptions.hasOption('P')) return null; try { Map pseudoWordMap = new HashMap(); BufferedReader br = new BufferedReader(new FileReader( argOptions.getStringOption('P'))); for (String line = null; (line = br.readLine()) != null; ) { String[] tokens = line.split("\\s+"); pseudoWordMap.put(tokens[0].trim(), tokens[1].trim()); } return pseudoWordMap; } catch (IOException ioe) { throw new IOError(ioe); } } /** * Returns a {@link ContextExtractor} that uses the given {@link * ContextGenerator} which will process the corpus in the format specified * by the command line. This is just a helper function for sub-classes * implementing {@link #getExtractor}. */ protected ContextExtractor contextExtractorFromGenerator( ContextGenerator generator) { // If experimentation mode is set, mark the generator as read only. if (argOptions.hasOption('e')) generator.setReadOnly(true); // If the evaluation type is for semEval, use a // SemEvalContextExtractor. if (argOptions.hasOption('E')) return new SemEvalContextExtractor( generator, windowSize(), argOptions.getStringOption('E')); // If the evaluation type is for pseudoWord, use a // PseudoWordContextExtractor. if (argOptions.hasOption('P')) return new PseudoWordContextExtractor( generator, windowSize(), getPseudoWordMap()); // Return a standard context extractor return new GeneralContextExtractor(generator, windowSize(), argOptions.hasOption('h')); } /** * Returns the window size used in a sliding context window. */ protected int windowSize() { return argOptions.getIntOption('W', 5); } protected Iterator getDocumentIterator() throws IOException { Iterator docIter = super.getDocumentIterator(); // If we are not using the pseudo word evalutor, just return the // iterator as normal. The SemEval corpora already have their contexts // shuffled so there is no worry about biasing the results towards a // particular sense. if (!argOptions.hasOption('P')) return docIter; // Otherwise, read in all of the documents into a list, shuffle it, and // return an iterator over that list. This is needed to ensure that the // ordering does not bias the clustering algorithm. NOTE that this // assumes that the entire corpus can fit into memory. List docList = new LinkedList(); while (docIter.hasNext()) docList.add(docIter.next()); Collections.shuffle(docList); return docList.iterator(); } /** * {@inheritDoc} */ protected SemanticSpace getSpace() { ArgOptions options = argOptions; // Setup the assignment reporter. When training, the assignment report // will only be used If the evaluation mode will be for pseudoWord. AssignmentReporter reporter = null; if (options.hasOption('P')) reporter = new PseudoWordReporter(System.out); int numClusters = options.getIntOption('c', 0); // If Wordsi is being used in an evaluation mode, set up word space // accordingly. if (options.hasOption('e')) { // If the evaluation type is not set, report an error and exit. if (!options.hasOption('E') && !options.hasOption('P')) { usage(); System.out.println( "An Evaluation Type must be set when evaluating " + " a trained Wordsi model."); System.exit(1); } // Load the semantic space that has the predefined word senses from // disk and return an EvaluationWordsi instance. try { SemanticSpace sspace = SemanticSpaceIO.load( options.getStringOption('e')); if (options.hasOption('E')) reporter = new SemEvalReporter(System.out); return new EvaluationWordsi( getAcceptedWords(), getExtractor(), sspace, reporter); } catch (IOException ioe) { throw new IOError(ioe); } } else if (options.hasOption('s')) { // Create a StreamingWordsi instance that uses the specified online // cluster generator. System.getProperties().setProperty( OnlineClustering.NUM_CLUSTERS_PROPERTY, options.getStringOption('c')); Generator> clusterGenerator = ReflectionUtil.getObjectInstance(options.getStringOption('s')); return new StreamingWordsi(getAcceptedWords(), getExtractor(), clusterGenerator, reporter, numClusters); } else if (options.hasOption('b')) { // Create a WaitingWordsi instance that uses the specified batch // clustering implementation. Clustering clustering = ReflectionUtil.getObjectInstance(options.getStringOption('b')); return new WaitingWordsi(getAcceptedWords(), getExtractor(), clustering, reporter, numClusters); } else { // None of the required options was provided, report an error and // exit. usage(); System.out.println("No clustering method was specified."); System.exit(1); return null; } } /** * Returns an {@link ObjectOutputStream} for the file referred to by the * {@code --Save} option or {@link null} if the option was not used. */ protected ObjectOutputStream openSaveFile() { try { if (saveStream == null && argOptions.hasOption('S')) saveStream = new ObjectOutputStream(new FileOutputStream( argOptions.getStringOption('S'))); return saveStream; } catch (IOException ioe) { throw new IOError(ioe); } } /** * Returns an {@link ObjectInputStream} for the file referred to by the * {@code * --Load} option or {@link null} if the option was not used. */ protected ObjectInputStream openLoadFile() { try { if (loadStream == null && argOptions.hasOption('L')) loadStream = new ObjectInputStream(new FileInputStream( argOptions.getStringOption('L'))); return loadStream; } catch (IOException ioe) { throw new IOError(ioe); } } /** * Writes the {@code obj} to the given {@link ObjectOutputStream}. */ protected void saveObject(ObjectOutputStream outStream, Object obj) { try { outStream.writeObject(obj); } catch (IOException ioe) { throw new IOError(ioe); } } /** * Returns an object of type {@code T} from the provided {@link * ObjectInputStream}. This method does the casting, so assignments should * be done directly to a pointer and not through a ternary operator, * otherwise the cast will need to be done a second time. */ @SuppressWarnings("unchecked") protected T loadObject(ObjectInputStream inStream) { try { return (T) inStream.readObject(); } catch (IOException ioe) { throw new IOError(ioe); } catch (ClassNotFoundException cnfe) { throw new IOError(cnfe); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy