edu.ucla.sspace.mains.LexSubWordsiMain Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sspace-wordsi Show documentation
Show all versions of sspace-wordsi Show documentation
The S-Space Package is a collection of algorithms for building
Semantic Spaces as well as a highly-scalable library for designing new
distributional semantics algorithms. Distributional algorithms process text
corpora and represent the semantic for words as high dimensional feature
vectors. This package also includes matrices, vectors, and numerous
clustering algorithms. These approaches are known by many names, such as
word spaces, semantic spaces, or distributed semantics and rest upon the
Distributional Hypothesis: words that appear in similar contexts have
similar meanings.
The newest version!
package edu.ucla.sspace.mains;
import edu.ucla.sspace.basis.BasisMapping;
import edu.ucla.sspace.common.SemanticSpace;
import edu.ucla.sspace.common.Similarity;
import edu.ucla.sspace.common.Similarity.SimType;
import edu.ucla.sspace.common.StaticSemanticSpace;
import edu.ucla.sspace.hal.LinearWeighting;
import edu.ucla.sspace.text.Document;
import edu.ucla.sspace.text.CorpusReader;
import edu.ucla.sspace.text.corpora.SemEvalLexSubReader;
import edu.ucla.sspace.util.MultiMap;
import edu.ucla.sspace.util.NearestNeighborFinder;
import edu.ucla.sspace.util.SerializableUtil;
import edu.ucla.sspace.util.SimpleNearestNeighborFinder;
import edu.ucla.sspace.vector.SparseDoubleVector;
import edu.ucla.sspace.vector.Vector;
import edu.ucla.sspace.wordsi.ContextExtractor;
import edu.ucla.sspace.wordsi.ContextGenerator;
import edu.ucla.sspace.wordsi.Wordsi;
import edu.ucla.sspace.wordsi.WordOccrrenceContextGenerator;
import edu.ucla.sspace.wordsi.semeval.SemEvalContextExtractor;;
import java.io.File;
import java.io.IOError;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Iterator;
/**
* @author Keith Stevens
*/
public class LexSubWordsiMain {
public static void main(String[] args) {
System.err.println("Loading wordsi.");
Wordsi wordsi = new LexSubWordsi(args[3], args[0]);
System.err.println("Loading basis mapping and extractor.");
BasisMapping basis =
SerializableUtil.load(new File(args[2]));
basis.setReadOnly(true);
ContextGenerator generator =
new WordOccrrenceContextGenerator(basis, new LinearWeighting(), 25);
ContextExtractor extractor =
new SemEvalContextExtractor(generator, 25);
System.out.println("Processing contexts");
CorpusReader reader = new SemEvalLexSubReader();
Iterator docIter = reader.read(new File(args[1]));
while (docIter.hasNext())
extractor.processDocument(docIter.next().reader(), wordsi);
}
public static class LexSubWordsi implements Wordsi {
private final NearestNeighborFinder comparator;
private final PrintWriter output;
private final SemanticSpace wordsiSpace;
public LexSubWordsi(String outFile, String sspaceFile) {
try {
output = new PrintWriter(outFile);
wordsiSpace = new StaticSemanticSpace(sspaceFile);
comparator = new SimpleNearestNeighborFinder(wordsiSpace);
} catch (IOException ioe) {
throw new IOError(ioe);
}
}
public boolean acceptWord(String focus) {
return true;
}
public void handleContextVector(String focus,
String secondary,
SparseDoubleVector vector) {
secondary = secondary.replaceAll("_", " ");
System.err.printf("Processing %s\n", secondary);
String bestSense = getBaseSense(focus, vector);
if (bestSense == null)
return;
MultiMap topWords = comparator.getMostSimilar(
bestSense, 10);
output.printf("%s ::", secondary);
for (String term : topWords.values())
output.printf(" %s", term);
output.println();
}
public String getBaseSense(String focus, SparseDoubleVector vector) {
int i = 0;
String bestSense = null;
double bestSim = 0;
while (true) {
String query = (i == 0) ? focus : focus + "-" + i;
i++;
Vector v = wordsiSpace.getVector(query);
if (v == null)
return bestSense;
double sim = Similarity.cosineSimilarity(v, vector);
if (sim >= bestSim) {
bestSim = sim;
bestSense = query;
}
}
}
}
}