All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.ucla.sspace.matrix.AdjustedMutualInformation Maven / Gradle / Ivy

Go to download

The S-Space Package is a collection of algorithms for building Semantic Spaces as well as a highly-scalable library for designing new distributional semantics algorithms. Distributional algorithms process text corpora and represent the semantic for words as high dimensional feature vectors. This package also includes matrices, vectors, and numerous clustering algorithms. These approaches are known by many names, such as word spaces, semantic spaces, or distributed semantics and rest upon the Distributional Hypothesis: words that appear in similar contexts have similar meanings.

The newest version!
package edu.ucla.sspace.matrix;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;


/**
 * @author Keith Stevens
 */
public class AdjustedMutualInformation implements MatrixAggregate {

    public double aggregate(Matrix m) {
        if (m.rows() == 1 && m.columns() == 1)
            return 1.0;

        double[] rowCounts = new double[m.rows()];
        double[] colCounts = new double[m.columns()];
        double sum = 0;
        for (int r = 0; r < m.rows(); ++r)
            for (int c = 0; c < m.columns(); ++c) {
                double v = m.get(r, c);
                rowCounts[r] += v;
                colCounts[c] += v;
                sum += v;
            }

        double emi = 0.0;
        double mi = 0.0;
        for (int r = 0; r < m.rows(); ++r) {
            double a = rowCounts[r];
            for (int c = 0; c < m.columns(); ++c) {
                double b = colCounts[c];
                // Update the mi for this class and cluster.
                mi += pmi(a, b, m.get(r,c), sum);

                // Update the expectation of mi.
                double n_ij = Math.max(1, a+b - sum);
                // Determine whether or not this pairing occured more than we'd
                // expect at random.
                double x1 = Math.min(n_ij, sum - a - b + n_ij);
                double x2 = Math.max(n_ij, sum - a - b + n_ij);

                // Compute a range of numbers
                List numerator = new ArrayList();
                List denominator = new ArrayList();
                for (double x = a-n_ij+1; x <= a; x++)
                    numerator.add(x);
                for (double x = b-n_ij+1; x <= b; x++)
                    numerator.add(x);

                for (double x = sum-a+1; x <= sum; ++x)
                    denominator.add(x);
                for (double x = 1; x <= x1; ++x)
                    denominator.add(x);

                if (sum-b > x2)
                    for (double x = x2+1; x <= sum-b; ++x)
                        numerator.add(x);
                else 
                    for (double x = sum-b+1; x <= x2; ++x)
                        denominator.add(x);

                // Sort the ranges in both num and dom so that we can avoid
                // overflow.
                Collections.sort(numerator);
                Collections.sort(denominator);

                // Compute the product of num / dom.
                double factorialPowers = 1;
                for (int k = 0; k < numerator.size(); ++k)
                    factorialPowers *= (numerator.get(k) / denominator.get(k));

                double factorialSum = pmi(a, b, n_ij, sum) *
                                      factorialPowers;
                factorialPowers *= adjustment(a, b, n_ij, sum);

                for (double x = Math.max(1.0, a+b-sum)+1;
                            x <= Math.min(a, b);
                            ++x) {
                    factorialSum += pmi(a, b, x, sum) *
                                   factorialPowers;
                    factorialPowers *= adjustment(a, b, x, sum);
                }

                emi += factorialSum;
            }
        }

        // Compute the entropy of the labels.
        double ha = entropy(rowCounts, sum);
        double hb = entropy(colCounts, sum);

        // If we would get NaN, return a raw AMI of 0.0
        double rawAmi = (Math.max(ha,hb) - emi == 0) 
            ? 0.0 
            : (mi - emi) / (Math.max(ha, hb) - emi);
        // Range the AMI to be above 0.0.
        return (rawAmi < 0) ? 0.0 : rawAmi;
    }

    private static double adjustment(double a, double b, double n, double sum) {
        return (a-n) * (b-n) / (n+1) / (sum - a - b + n + 1);
    }

    public static double pmi(double a, double b, double n, double sum) {
        return (n == 0d)
            ? 0.0
            : n/sum * Math.log(sum*n/(a*b + .000000001));
    }

    private static double entropy(double[] sums, double total) {
        double entropy = 0;
        for (double sum : sums)
            if (sum != 0d)
                entropy += sum / total * Math.log(sum/total);
        return -entropy;
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy