edu.ucla.sspace.matrix.SparseSymmetricMatrix Maven / Gradle / Ivy
Show all versions of sspace-wordsi Show documentation
/*
* Copyright 2011 David Jurgens
*
* This file is part of the S-Space package and is covered under the terms and
* conditions therein.
*
* The S-Space package is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation and distributed hereunder to you.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND NO REPRESENTATIONS OR WARRANTIES,
* EXPRESS OR IMPLIED ARE MADE. BY WAY OF EXAMPLE, BUT NOT LIMITATION, WE MAKE
* NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY
* PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION
* WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
* RIGHTS.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package edu.ucla.sspace.matrix;
import edu.ucla.sspace.vector.SparseHashDoubleVector;
import edu.ucla.sspace.vector.DoubleVector;
import edu.ucla.sspace.vector.SparseDoubleVector;
import edu.ucla.sspace.vector.Vector;
import edu.ucla.sspace.vector.Vectors;
/**
* A decorator around a {@code SparseMatrix} that keeps only the upper
* triangular values while providing a symmetric view of the data. This class
* only records changes values where row > col. For all other values, the
* row and column values are swapped and then the backing matrix is updated.
* Note, that if the provided backing matrix has existing values for indices row
* < col, these values will be ignored and never returned from any method.
* Note the original perfomance characteristics of the backing matrix are
* retained by this class.
*
* The primary benfit of this class is for storing large symmetric sparse
* matrices in half of the memory.
*
* @author David Jurgens
*/
public class SparseSymmetricMatrix extends AbstractMatrix
implements SparseMatrix, java.io.Serializable {
private static final long serialVersionUID = 1L;
private final SparseMatrix backing;
/**
* Constructs a sparse matrix with the specified dimensions.
*/
public SparseSymmetricMatrix(SparseMatrix backing) {
this.backing = backing;
}
/**
* {@inheritDoc}
*/
public int columns() {
return backing.columns();
}
/**
* {@inheritDoc}
*/
@Override
public double get(int row, int column) {
// Swap the ordering so only the upper triangular is accessed.
if (row > column) {
int tmp = column;
column = row;
row = tmp;
}
return backing.get(row, column);
}
/**
* {@inheritDoc}
*/
@Override public SparseDoubleVector getColumnVector(int column) {
int rows = rows();
SparseHashDoubleVector col = new SparseHashDoubleVector(rows);
for (int r = 0; r < rows; ++r)
col.set(r, get(r, column));
return col;
}
/**
* {@inheritDoc}
*/
@Override public SparseDoubleVector getRowVector(int row) {
int cols = columns();
SparseHashDoubleVector rowVec = new SparseHashDoubleVector(cols);
for (int c = 0; c < cols; ++c)
rowVec.set(c, get(row, c));
return rowVec;
}
/**
* {@inheritDoc}
*/
public int rows() {
return backing.rows();
}
/**
* {@inheritDoc}
*/
@Override public void set(int row, int column, double val) {
// Swap the ordering so only the upper triangular is written to
if (row > column) {
int tmp = column;
column = row;
row = tmp;
}
backing.set(row, column, val);
}
}