edu.ucla.sspace.similarity.DotProduct Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sspace-wordsi Show documentation
Show all versions of sspace-wordsi Show documentation
The S-Space Package is a collection of algorithms for building
Semantic Spaces as well as a highly-scalable library for designing new
distributional semantics algorithms. Distributional algorithms process text
corpora and represent the semantic for words as high dimensional feature
vectors. This package also includes matrices, vectors, and numerous
clustering algorithms. These approaches are known by many names, such as
word spaces, semantic spaces, or distributed semantics and rest upon the
Distributional Hypothesis: words that appear in similar contexts have
similar meanings.
The newest version!
/*
* Copyright (c) 2011, Lawrence Livermore National Security, LLC. Produced at
* the Lawrence Livermore National Laboratory. Written by Keith Stevens,
* [email protected] OCEC-10-073 All rights reserved.
*
* This file is part of the S-Space package and is covered under the terms and
* conditions therein.
*
* The S-Space package is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation and distributed hereunder to you.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND NO REPRESENTATIONS OR WARRANTIES,
* EXPRESS OR IMPLIED ARE MADE. BY WAY OF EXAMPLE, BUT NOT LIMITATION, WE MAKE
* NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY
* PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION
* WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
* RIGHTS.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package edu.ucla.sspace.similarity;
import edu.ucla.sspace.vector.DoubleVector;
import edu.ucla.sspace.vector.IntegerVector;
import edu.ucla.sspace.vector.Vector;
import edu.ucla.sspace.vector.VectorMath;
/**
* Returns the dot product of the two vectors.
*
*
*
* This metric is symmetric.
*
* @author Keith Stevens
*/
public class DotProduct extends AbstractSymmetricSimilarityFunction {
/**
* {@inheritDoc}
*/
public double sim(DoubleVector v1, DoubleVector v2) {
return VectorMath.dotProduct(v1, v2);
}
/**
* {@inheritDoc}
*/
public double sim(IntegerVector v1, IntegerVector v2) {
return VectorMath.dotProduct(v1, v2);
}
/**
* {@inheritDoc}
*/
public double sim(Vector v1, Vector v2) {
return VectorMath.dotProduct(v1, v2);
}
}