All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.ucla.sspace.tools.DepTokenCounter Maven / Gradle / Ivy

Go to download

The S-Space Package is a collection of algorithms for building Semantic Spaces as well as a highly-scalable library for designing new distributional semantics algorithms. Distributional algorithms process text corpora and represent the semantic for words as high dimensional feature vectors. This package also includes matrices, vectors, and numerous clustering algorithms. These approaches are known by many names, such as word spaces, semantic spaces, or distributed semantics and rest upon the Distributional Hypothesis: words that appear in similar contexts have similar meanings.

The newest version!
/*
 * Copyright 2009 Keith Stevens
 *
 * This file is part of the S-Space package and is covered under the terms and
 * conditions therein.
 *
 * The S-Space package is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation and distributed hereunder to you.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND NO REPRESENTATIONS OR WARRANTIES,
 * EXPRESS OR IMPLIED ARE MADE.  BY WAY OF EXAMPLE, BUT NOT LIMITATION, WE MAKE
 * NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY
 * PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION
 * WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
 * RIGHTS.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see .
 */

package edu.ucla.sspace.tools;

import edu.ucla.sspace.common.ArgOptions;

import edu.ucla.sspace.mains.OptionDescriptions;

import edu.ucla.sspace.dependency.CoNLLDependencyExtractor;
import edu.ucla.sspace.dependency.DependencyExtractor;
import edu.ucla.sspace.dependency.DependencyTreeNode;
import edu.ucla.sspace.dependency.WaCKyDependencyExtractor;

import edu.ucla.sspace.text.DependencyFileDocumentIterator;
import edu.ucla.sspace.text.Document;
import edu.ucla.sspace.text.TokenFilter;
import edu.ucla.sspace.text.Stemmer;

import edu.ucla.sspace.util.LoggerUtil;
import edu.ucla.sspace.util.TrieMap;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.File;
import java.io.FileReader;
import java.io.PrintWriter;

import java.util.Collections;
import java.util.Iterator;
import java.util.Map;
import java.util.Properties;

import java.util.logging.Level;
import java.util.logging.Logger;

/**
 * A utility class for counting tokens in one or more files.  This class also
 * supports counting compound token instances, as well as counting for only a
 * subset of the unique tokens.  This class is intended for token counting in
 * very large corpora where space-efficiency is important.  The output is
 * equivalent to the command cat corpus.txt | awk '{ split($0,a); for
 * (i in a) { print a[i]; }}' | uniq -c.  However, this
 * command is significantly more memory and CPU intensive. 
 *
 * @author Keith Stevens 
 */
public class DepTokenCounter {

    /**
     * The number of tokens to process before emitting a verbose message about
     * the counting status.
     */
    private static final int UPDATE_INTERVAL = 10000;

    /**
     * The logger used to emit messages for this class
     */
    private static final Logger LOGGER = 
        Logger.getLogger(DepTokenCounter.class.getName());

    /**
     * A mapping from token to the number of times it occurred
     */
    private final Map tokenToCount;

    /**
     * {@code true} if the token counter should lower case all tokens before
     * counting
     */
    private final boolean doLowerCasing;

    /**
     * If true, part of speech tags will be added to each term before being used
     * as a dimension.
     */
    private final boolean doPos;

    /**
     * The {@link DependencyExtractor} used to extract parse trees.
     */
    private final DependencyExtractor extractor;

    /**
     * Creates a new token counter that optionally lower cases tokens
     *
     * @param doLowerCasing {@code true} if the token counter should lower case
     *        all tokens before counting
     */
    public DepTokenCounter(boolean doLowerCasing,
                           boolean doPos,
                           DependencyExtractor extractor) { 
        this.doLowerCasing = doLowerCasing;
        this.doPos = doPos;
        this.extractor = extractor;

        tokenToCount = new TrieMap();
    }

    /**
     * Returns a mapping from each seen token to the number of times it occurred
     */
    public Map getTokenCounts() {
        return Collections.unmodifiableMap(tokenToCount);
    }

    /**
     * Counts all of the tokens in the iterator
     */
    private void process(Iterator docs) throws IOException {
        long numTokens = 0;
        while (docs.hasNext()) {
            Document doc = docs.next();
            DependencyTreeNode[] nodes = extractor.readNextTree(doc.reader());
            for (DependencyTreeNode node : nodes) {
                String token = node.word();
                if (doLowerCasing)
                    token = token.toLowerCase();
                if (doPos)
                    token = token + "-" + node.pos();

                Integer count = tokenToCount.get(token);
                tokenToCount.put(token, (count == null) ? 1 : 1 + count);
                numTokens++;

                if (numTokens % UPDATE_INTERVAL == 0)
                    LOGGER.fine(
                            "Processed " + numTokens + " tokens.  Currently " +
                            tokenToCount.size() + " unique tokens");
            }
        }
    }

    public static void main(String[] args) throws Exception {
        // Setup the argument options.
        ArgOptions options = new ArgOptions();
        options.addOption('Z', "stemmingAlgorithm",
                          "specifices the stemming algorithm to use on " +
                          "tokens while iterating.  (default: none)",
                          true, "CLASSNAME", "Tokenizing Options");
        options.addOption('F', "tokenFilter", "filters to apply to the input " +
                          "token stream", true, "FILTER_SPEC", 
                          "Tokenizing Options");
        options.addOption('L', "lowerCase", "lower-cases each token after " +
                          "all other filtering has been applied", false, null, 
                          "Tokenizing Options");
        options.addOption('P', "partOfSpeech",
                          "use part of speech tags for each token.",
                          false, null, "Tokenizing Options");
        options.addOption('H', "discardHeader",
                          "If true, the first line of each dependency " +
                          "document will be discarded.",
                          false, null, "Tokenizing Options");
        options.addOption('v', "verbose",
                          "Print verbose output about counting status",
                          false, null, "Optional");
        options.addOption('D', "dependencyParseFormat",
                          "the name of the dependency parsed format for " +
                          "the corpus (defalt: CoNLL)",
                          true, "STR", 
                          "Advanced Dependency Parsing");

        // Parse and validate the options.
        options.parseOptions(args);
        if (options.numPositionalArgs() < 2) {
            System.out.println(
                "usage: java DepTokenCounter" 
                + " [options]   []*\n"
                + options.prettyPrint() 
                + "\n\n" + OptionDescriptions.TOKEN_FILTER_DESCRIPTION);
            return;
        }

        // Setup logging.
        if (options.hasOption("verbose")) 
            LoggerUtil.setLevel(Level.FINE);

        // Extract key arguments.
        boolean doLowerCasing = options.hasOption("lowerCase");
        boolean doPos = options.hasOption("partOfSpeech");
        boolean discardHeader = options.hasOption('H');

        TokenFilter filter = (options.hasOption("tokenFilter"))
            ? TokenFilter.loadFromSpecification(options.getStringOption('F'))
            : null;

        Stemmer stemmer = options.getObjectOption("stemmingAlgorithm", null);

        String format = options.getStringOption(
                "dependencyParseFormat", "CoNLL");

        // setup the dependency extractor.
        DependencyExtractor e = null;
        if (format.equals("CoNLL"))
            e = new CoNLLDependencyExtractor(filter, stemmer);
        else if (format.equals("WaCKy"))
            e = new WaCKyDependencyExtractor(filter, stemmer);

        DepTokenCounter counter = new DepTokenCounter(doLowerCasing, doPos, e);

        // Process each of the input files
        for (int i = 1; i < options.numPositionalArgs(); ++i)
            counter.process(new DependencyFileDocumentIterator(
                        options.getPositionalArg(i), discardHeader));

        // Then write the results to disk
        PrintWriter pw = new PrintWriter(options.getPositionalArg(0));
        for (Map.Entry entry 
                 : counter.tokenToCount.entrySet())
            pw.printf("%s %d\n", entry.getKey(), entry.getValue());
        pw.close();
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy