edu.ucla.sspace.vector.SparseHashDoubleVector Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sspace-wordsi Show documentation
Show all versions of sspace-wordsi Show documentation
The S-Space Package is a collection of algorithms for building
Semantic Spaces as well as a highly-scalable library for designing new
distributional semantics algorithms. Distributional algorithms process text
corpora and represent the semantic for words as high dimensional feature
vectors. This package also includes matrices, vectors, and numerous
clustering algorithms. These approaches are known by many names, such as
word spaces, semantic spaces, or distributed semantics and rest upon the
Distributional Hypothesis: words that appear in similar contexts have
similar meanings.
The newest version!
/*
* Copyright 2009 David Jurgens
*
* This file is part of the S-Space package and is covered under the terms and
* conditions therein.
*
* The S-Space package is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation and distributed hereunder to you.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND NO REPRESENTATIONS OR WARRANTIES,
* EXPRESS OR IMPLIED ARE MADE. BY WAY OF EXAMPLE, BUT NOT LIMITATION, WE MAKE
* NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY
* PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION
* WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
* RIGHTS.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package edu.ucla.sspace.vector;
import edu.ucla.sspace.util.DoubleEntry;
import edu.ucla.sspace.util.ObjectEntry;
import gnu.trove.iterator.TIntDoubleIterator;
import gnu.trove.map.TIntDoubleMap;
import gnu.trove.map.hash.TIntDoubleHashMap;
import java.io.Serializable;
import java.util.Arrays;
import java.util.Iterator;
/**
* A {@code SparseVector} implementation backed by a {@code Map}. This provides
* amoritized constant time access to all get and set operations, while using
* more space than the {@link CompactSparseVector} or {@link
* AmortizedSparseVector} classes.
*
* @author David Jurgens
*/
public class SparseHashDoubleVector
implements SparseDoubleVector, Serializable, Iterable {
private static final long serialVersionUID = 1L;
private TIntDoubleHashMap vector;
private int[] nonZeroIndices;
private int maxLength;
private double magnitude;
/**
* Creates a new vector with the maximum possible length.
*/
public SparseHashDoubleVector() {
this(Integer.MAX_VALUE);
}
/**
* Creates a new vector of the specified length
*
* @param length the length of this vector
*/
public SparseHashDoubleVector(int length) {
maxLength = length;
vector = new TIntDoubleHashMap();
nonZeroIndices = null;
}
/**
* Creates a new vector using the non-zero values of the specified array.
* The created vector contains no references to the provided array, so
* changes to either will not be reflected in the other.
*
* @param values the intial values for this vector to have
*/
public SparseHashDoubleVector(double[] values) {
maxLength = values.length;
vector = new TIntDoubleHashMap();
nonZeroIndices = null;
magnitude = 0;
for (int i = 0; i < values.length; ++i) {
if (values[i] != 0) {
magnitude += values[i] * values[i];
vector.put(i, values[i]);
}
}
magnitude = Math.sqrt(magnitude);
}
/**
* Create a {@code CompactSparseVector} using the indices and their
* respecitve values.
*
* @param indices an sorted array of positive values representing the
* non-zero indices of the array
* @param values an array of values that correspond their respective indices
* @param length the total length of the array
*
* @throw IllegalArgumentException if {@code nonZeros} and {@code values}
* have different lengths or if {@code length} is less than any index
* found in {@code nonZeros}.
*/
public SparseHashDoubleVector(int[] nonZeros, double[] values, int length) {
if (nonZeros.length != values.length)
throw new IllegalArgumentException(
"Length of the given nonZeros and values arrays must " +
"match. Given: " +
nonZeros.length + " and " + values.length);
this.maxLength = length;
this.vector = new TIntDoubleHashMap();
this.nonZeroIndices = nonZeros;
this.magnitude = 0;
for (int i = 0; i < nonZeros.length; ++i) {
if (nonZeros[i] >= maxLength)
throw new IllegalArgumentException(
"Length must be larger than the largest " +
"non zero index provided. " +
"Length: " + length + ", index: " + nonZeros[i]);
magnitude += values[i] * values[i];
vector.put(nonZeros[i], values[i]);
}
magnitude = Math.sqrt(magnitude);
}
public SparseHashDoubleVector(DoubleVector values) {
maxLength = values.length();
vector = new TIntDoubleHashMap();
nonZeroIndices = null;
magnitude = values.magnitude();
if (values instanceof SparseVector) {
int[] nonZeros = ((SparseVector) values).getNonZeroIndices();
for (int index : nonZeros)
vector.put(index, values.get(index));
} else {
for (int index = 0; index < values.length(); ++index) {
double value = values.get(index);
if (value != 0d)
vector.put(index, value);
}
}
}
/**
* {@inheritDoc}
*/
public double add(int index, double delta) {
double val = get(index) + delta;
set(index, val);
return val;
}
/**
* {@inheritDoc}
*/
public double get(int index) {
return vector.get(index);
}
/**
* {@inheritDoc}
*/
public Double getValue(int index) {
return get(index);
}
/**
* Returns an iterator over the non-{@code 0} values in this vector. This
* method makes no guarantee about the order in which the indices are
* returned.
*/
public Iterator iterator() {
return new DoubleIterator();
}
/**
* {@inheritDoc}
*/
public void set(int index, Number value) {
set(index, value.doubleValue());
}
/**
* {@inheritDoc}
*/
public void set(int index, double value) {
if (value == 0d)
vector.remove(index);
else
vector.put(index, value);
magnitude = -1;
nonZeroIndices = null;
}
/**
* {@inheritDoc}
*/
public double[] toArray() {
double[] array = new double[length()];
for (int i : vector.keys())
array[i] = vector.get(i);
return array;
}
/**
* {@inheritDoc}
*/
public int length() {
return maxLength;
}
/**
* {@inheritDoc}
*/
public double magnitude() {
if (magnitude < 0) {
magnitude = 0;
for (double d : vector.values())
magnitude += d*d;
magnitude = Math.sqrt(magnitude);
}
return magnitude;
}
/**
* {@inheritDoc}
*/
public int[] getNonZeroIndices() {
if (nonZeroIndices == null)
nonZeroIndices = vector.keys();
return nonZeroIndices;
}
/**
* An iterator over the {@code double} values in the vector, wrapping the
* backing {@code SparseHashArray}'s own iterator.
*/
class DoubleIterator implements Iterator {
TIntDoubleIterator it;
DoubleEntry entry;
public DoubleIterator() {
it = vector.iterator();
entry = new DoubleEntry(0, 0);
}
public boolean hasNext() {
return it.hasNext();
}
public DoubleEntry next() {
it.advance();
entry.index = it.key();
entry.value = it.value();
return entry;
}
public void remove() {
throw new UnsupportedOperationException(
"Cannot remove from vector");
}
}
}