All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.ucla.sspace.wordsi.DependencyContextExtractor Maven / Gradle / Ivy

Go to download

The S-Space Package is a collection of algorithms for building Semantic Spaces as well as a highly-scalable library for designing new distributional semantics algorithms. Distributional algorithms process text corpora and represent the semantic for words as high dimensional feature vectors. This package also includes matrices, vectors, and numerous clustering algorithms. These approaches are known by many names, such as word spaces, semantic spaces, or distributed semantics and rest upon the Distributional Hypothesis: words that appear in similar contexts have similar meanings.

The newest version!
/*
 * Copyright 2010 Keith Stevens 
 *
 * This file is part of the S-Space package and is covered under the terms and
 * conditions therein.
 *
 * The S-Space package is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation and distributed hereunder to you.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND NO REPRESENTATIONS OR WARRANTIES,
 * EXPRESS OR IMPLIED ARE MADE.  BY WAY OF EXAMPLE, BUT NOT LIMITATION, WE MAKE
 * NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY
 * PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION
 * WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
 * RIGHTS.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see .
 */

package edu.ucla.sspace.wordsi;

import edu.ucla.sspace.dependency.DependencyExtractor;
import edu.ucla.sspace.dependency.DependencyPath;
import edu.ucla.sspace.dependency.DependencyTreeNode;

import edu.ucla.sspace.vector.CompactSparseVector;
import edu.ucla.sspace.vector.SparseDoubleVector;

import java.io.BufferedReader;
import java.io.IOError;
import java.io.IOException;


/**
 * This {@link ContextExtractor} reads in documents that have been dependency
 * parsed.  Contexts are defined by a {@link FilteredDependencyIterator}, which
 * is used to traverse all possible dependency paths rooted at each word of
 * interest in a document.  Each reachable and valid {@link DependencyPath}
 * forms a feature and is weighted by a {@link DependencyPathWeight}.
 *
 * @author Keith Stevens
 */
public class DependencyContextExtractor implements ContextExtractor {

    /**
     * The {@link DependencyExtractor} used to extract parse trees from the
     * already parsed documents
     */
    protected final DependencyExtractor extractor;

    /**
     * The {@link DependencyContextGenerator} responsible for processing a
     * {@link DependencyTreeNode} and turning it into a context vector.
     */
    protected final DependencyContextGenerator generator;

    /**
     * If true, the first line in a dependency document will be treated as the
     * header of the document, and not part of the parse tree.
     */
    protected final boolean readHeader;

    /**
     * Creates a new {@link DependencyContextExtractor}.
     *
     * @param extractor The {@link DependencyExtractor} that parses the document
     *        and returns a valid dependency tree
     * @param generator The {@link DependencyContextGenerator} used to created
     *        context vectors based on a {@link DependencyTreeNode}.
     */
    public DependencyContextExtractor(DependencyExtractor extractor,
                                      DependencyContextGenerator generator) {
        this(extractor, generator, false);
    }

    /**
     * Creates a new {@link DependencyContextExtractor}.
     *
     * @param extractor The {@link DependencyExtractor} that parses the document
     *        and returns a valid dependency tree
     * @param generator The {@link DependencyContextGenerator} used to created
     *        context vectors based on a {@link DependencyTreeNode}.
     * @param readheader If true, the first line in a dependency tree document
     *        will be discarded from the tree and used as a header.
     */
    public DependencyContextExtractor(DependencyExtractor extractor,
                                      DependencyContextGenerator generator,
                                      boolean readHeader) {
        this.extractor = extractor;
        this.generator = generator;
        this.readHeader = readHeader;
    }

    /**
     * {@inheritDoc}
     */
    public int getVectorLength() {
        return generator.getVectorLength();
    }

    /**
     * {@inheritDoc}
     */
    public void processDocument(BufferedReader document, Wordsi wordsi) {
        try {
            // Handle the context header, if one exists.  Context headers are
            // assumed to be the first line in a document.
            String contextHeader = handleContextHeader(document);

            // Iterate over all of the parseable dependency parsed sentences in
            // the document.
            DependencyTreeNode[] nodes = extractor.readNextTree(document);

            // Skip empty documents.
            if (nodes.length == 0)
                return;

            // Examine the paths for each word in the sentence.
            for (int wordIndex = 0; wordIndex < nodes.length; ++wordIndex) {
                DependencyTreeNode focusNode = nodes[wordIndex];

                // Get the focus word, i.e., the primary key, and the
                // secondary key.  These steps are made as protected methods
                // so that the SenseEvalDependencyContextExtractor
                // PseudoWordDependencyContextExtractor can manage only the
                // keys, instead of the document traversal.
                String focusWord = getPrimaryKey(focusNode);
                String secondarykey = getSecondaryKey(focusNode, contextHeader);

                // Ignore any focus words that are unaccepted by Wordsi.
                if (!acceptWord(focusNode, contextHeader, wordsi))
                    continue;

                // Create a new context vector.
                SparseDoubleVector focusMeaning = generator.generateContext(
                        nodes, wordIndex);
                wordsi.handleContextVector(
                        focusWord, secondarykey, focusMeaning);
            }
            document.close();
        } catch (IOException ioe) {
            throw new IOError(ioe);
        }
    }

    /**
     * Returns true if {@link Wordsi} should generate a context vector for
     * {@code focusWord}.    
     */
    protected boolean acceptWord(DependencyTreeNode focusNode,
                                 String contextHeader,
                                 Wordsi wordsi) {
        return wordsi.acceptWord(focusNode.word());
    }

    /**
     * Returns the token for the primary key, i.e. the focus word.  This is just
     * the text of the {@code focusNode}.
     */
    protected String getPrimaryKey(DependencyTreeNode focusNode) {
        return focusNode.word();
    }

    /**
     * Returns the token for the secondary key.  If a {@code contextHeader} is
     * provided, this is the {@code contextHeader}, otherwise it is the word for
     * the {@code focusNode}.
     */
    protected String getSecondaryKey(DependencyTreeNode focusNode,
                                     String contextHeader) {
        return (contextHeader == null) ? focusNode.word() : contextHeader;
    }

    /**
     * Returns the string for the context header.  If {@link readHeader} is
     * true, this returns the first line, otherwise it returns {@code null}.
     */
    protected String handleContextHeader(BufferedReader document)
            throws IOException {
        return (readHeader) ? document.readLine().trim() : null;
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy