edu.ucla.sspace.wordsi.GraphWordsi Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sspace-wordsi Show documentation
Show all versions of sspace-wordsi Show documentation
The S-Space Package is a collection of algorithms for building
Semantic Spaces as well as a highly-scalable library for designing new
distributional semantics algorithms. Distributional algorithms process text
corpora and represent the semantic for words as high dimensional feature
vectors. This package also includes matrices, vectors, and numerous
clustering algorithms. These approaches are known by many names, such as
word spaces, semantic spaces, or distributed semantics and rest upon the
Distributional Hypothesis: words that appear in similar contexts have
similar meanings.
The newest version!
package edu.ucla.sspace.wordsi;
import edu.ucla.sspace.basis.BasisMapping;
import edu.ucla.sspace.basis.FilteredStringBasisMapping;
import edu.ucla.sspace.basis.StringBasisMapping;
import edu.ucla.sspace.common.SemanticSpace;
import edu.ucla.sspace.dependency.CoNLLDependencyExtractor;
import edu.ucla.sspace.dependency.DependencyExtractor;
import edu.ucla.sspace.dependency.DependencyTreeNode;
import edu.ucla.sspace.matrix.CellMaskedSparseMatrix;
import edu.ucla.sspace.matrix.GrowingSparseMatrix;
import edu.ucla.sspace.matrix.Matrix;
import edu.ucla.sspace.matrix.MatrixIO;
import edu.ucla.sspace.matrix.MatrixIO.Format;
import edu.ucla.sspace.matrix.SparseSymmetricMatrix;
import edu.ucla.sspace.matrix.SparseMatrix;
import edu.ucla.sspace.text.DependencyFileDocumentIterator;
import edu.ucla.sspace.text.Document;
import edu.ucla.sspace.util.SerializableUtil;
import edu.ucla.sspace.vector.Vector;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.Properties;
/**
* @author Keith Stevens
*/
public class GraphWordsi implements SemanticSpace {
private final BasisMapping basis;
private final DependencyExtractor extractor;
private final Map referenceLikilhood;
private final SparseMatrix termGraph;
private final String matrixFileName;
private final String basisFileName;
public GraphWordsi(BasisMapping basis,
DependencyExtractor extractor,
Map referenceLikilhood,
String outName) {
this.basis = basis;
this.extractor = extractor;
this.referenceLikilhood = referenceLikilhood;
this.termGraph = new SparseSymmetricMatrix(new GrowingSparseMatrix());
this.matrixFileName = outName + ".mat";
this.basisFileName = outName + ".basis";
}
public void processDocument(BufferedReader reader) throws IOException {
// Handle the context header, if one exists. Context headers are
// assumed to be the first line in a document.
String header = reader.readLine();
// Iterate over all of the parseable dependency parsed sentences in
// the document.
DependencyTreeNode[] nodes = extractor.readNextTree(reader);
// Skip empty documents.
if (nodes.length == 0)
return;
// Examine the paths for each word in the sentence.
for (int wordIndex = 0; wordIndex < nodes.length; ++wordIndex) {
DependencyTreeNode focusNode = nodes[wordIndex];
// Get the focus word, i.e., the primary key, and the
// secondary key. These steps are made as protected methods
// so that the SenseEvalDependencyContextExtractor
// PseudoWordDependencyContextExtractor can manage only the
// keys, instead of the document traversal.
String focusWord = focusNode.word();
String secondarykey = focusNode.lemma();
// Ignore any focus words that are unaccepted by Wordsi.
if (!secondarykey.equals(header))
continue;
for (int i = 0; i < nodes.length; ++i) {
if (i == wordIndex ||
!nodes[i].pos().startsWith("N"))
continue;
int index1 = basis.getDimension(nodes[i].word());
if (index1 < 0)
continue;
for (int j = i+1; j < nodes.length; ++j) {
if (i == wordIndex ||
!nodes[j].pos().startsWith("N"))
continue;
int index2 = basis.getDimension(nodes[j].word());
if (index2 < 0)
continue;
termGraph.add(index1, index2, 1);
}
}
}
}
public void processSpace(Properties props) {
try {
StringBasisMapping finalBasis = new StringBasisMapping();
double[] termFrequency = new double[termGraph.rows()];
double total = 0;
for (int r = 0; r < termGraph.rows(); ++r)
for (int c = r+1; c < termGraph.columns(); ++c) {
termFrequency[r] += termGraph.get(r,c);
total += termGraph.get(r,c);
}
int savedRows = 0;
List rowMapList = new ArrayList();
for (int r = 0; r < termGraph.rows(); ++r) {
String word = basis.getDimensionDescription(r);
Double l = referenceLikilhood.get(word);
double reference = (l == null) ? .0000000001 : l;
double logLikelihood = -2 * Math.log(reference/(termFrequency[r] / total));
if (termFrequency[r] >= 10 && logLikelihood >= 0) {
rowMapList.add(r);
finalBasis.getDimension(word);
}
}
int[] rowMap = new int[rowMapList.size()];
for (int i = 0; i < rowMap.length; ++i)
rowMap[i] = rowMapList.get(i);
Matrix maskedMatrix = new CellMaskedSparseMatrix(
termGraph, rowMap, rowMap);
MatrixIO.writeMatrix(maskedMatrix,
new File(matrixFileName),
Format.SVDLIBC_SPARSE_TEXT);
SerializableUtil.save(finalBasis, basisFileName);
} catch (IOException ioe) {
ioe.printStackTrace();
}
}
public String getSpaceName() {
return null;
}
public int getVectorLength() {
return 0;
}
public Vector getVector(String word) {
return null;
}
public Set getWords() {
return null;
}
}