edu.ucla.sspace.wordsi.semeval.SemEvalContextExtractor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sspace-wordsi Show documentation
Show all versions of sspace-wordsi Show documentation
The S-Space Package is a collection of algorithms for building
Semantic Spaces as well as a highly-scalable library for designing new
distributional semantics algorithms. Distributional algorithms process text
corpora and represent the semantic for words as high dimensional feature
vectors. This package also includes matrices, vectors, and numerous
clustering algorithms. These approaches are known by many names, such as
word spaces, semantic spaces, or distributed semantics and rest upon the
Distributional Hypothesis: words that appear in similar contexts have
similar meanings.
The newest version!
/*
* Copyright 2010 Keith Stevens
*
* This file is part of the S-Space package and is covered under the terms and
* conditions therein.
*
* The S-Space package is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation and distributed hereunder to you.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND NO REPRESENTATIONS OR WARRANTIES,
* EXPRESS OR IMPLIED ARE MADE. BY WAY OF EXAMPLE, BUT NOT LIMITATION, WE MAKE
* NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY
* PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION
* WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
* RIGHTS.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package edu.ucla.sspace.wordsi.semeval;
import edu.ucla.sspace.wordsi.ContextExtractor;
import edu.ucla.sspace.wordsi.ContextGenerator;
import edu.ucla.sspace.wordsi.Wordsi;
import edu.ucla.sspace.text.IteratorFactory;
import edu.ucla.sspace.vector.SparseDoubleVector;
import edu.ucla.sspace.vector.VectorIO;
import java.io.BufferedReader;
import java.util.ArrayDeque;
import java.util.Iterator;
import java.util.Queue;
/**
* A {@link ContextExtractor} for handling SemEval or SenseEval corpora. For
* each document, there should be an instance identifier, which uniquely
* identifies the context. There should also be some marker, i.e., "|||", that
* marks where the focus word is in the document. Only one context vector will
* be generated for each document. This class depends on a {@link
* ContextGenerator} for generating the context vectors.
*
* @author Keith Stevens
*/
public class SemEvalContextExtractor implements ContextExtractor {
/**
* The default separator used.
*/
private static final String DEFAULT_SEPARATOR = "||||";
/**
* The {@link ContextGenerator} responsible for creating context vectors.
*/
private final ContextGenerator generator;
/**
* The number of words before and after a focus word which compose the
* context.
*/
private final int windowSize;
/**
* The token used to separate the previous context from the focus word.
*/
private final String separator;
/**
* Creates a new {@link SemEvalContextExtractor}.
*
* @param generator The {@link ContextGenerator} responsible for creating
* context vectors
* @param windowSize the number of words before and after a focus word which
* compose the context.
*/
public SemEvalContextExtractor(ContextGenerator generator,
int windowSize) {
this(generator, windowSize, DEFAULT_SEPARATOR);
}
/**
* Creates a new {@link SemEvalContextExtractor}.
*
* @param generator The {@link ContextGenerator} responsible for creating
* context vectors
* @param windowSize the number of words before and after a focus word which
* compose the context.
*/
public SemEvalContextExtractor(ContextGenerator generator,
int windowSize,
String separator) {
this.generator = generator;
this.windowSize = windowSize;
this.separator = separator;
}
/**
* {@inheritDoc}
*/
public int getVectorLength() {
return generator.getVectorLength();
}
/**
* {@inheritDoc}
*/
public void processDocument(BufferedReader document, Wordsi wordsi) {
Queue prevWords = new ArrayDeque();
Queue nextWords = new ArrayDeque();
Iterator it = IteratorFactory.tokenizeOrdered(document);
// Skip empty documents.
if (!it.hasNext())
return;
String instanceId = it.next();
// Fill up the words after the context so that when the real processing
// starts, the context is fully prepared.
for (int i = 0 ; it.hasNext(); ++i) {
String term = it.next();
if (term.equals(separator))
break;
prevWords.offer(term.intern());
}
// Eliminate the first set of words that we don't want to inspect.
while (prevWords.size() > windowSize)
prevWords.remove();
// It's possible that the SenseEval/SemEval parser failed to find the
// focus word. For these cases, skip the context.
if (!it.hasNext())
return;
String focusWord = it.next().intern();
// Extract the set of words to consider after the focus word.
while (it.hasNext() && nextWords.size() < windowSize)
nextWords.offer(it.next().intern());
// Create the context vector and have wordsi handle it.
SparseDoubleVector contextVector = generator.generateContext(
prevWords, nextWords);
wordsi.handleContextVector(focusWord, instanceId, contextVector);
}
}