All Downloads are FREE. Search and download functionalities are using the official Maven repository.

jnt.FFT.ComplexFloatFFT_Radix2 Maven / Gradle / Ivy

Go to download

The S-Space Package is a collection of algorithms for building Semantic Spaces as well as a highly-scalable library for designing new distributional semantics algorithms. Distributional algorithms process text corpora and represent the semantic for words as high dimensional feature vectors. This package also includes matrices, vectors, and numerous clustering algorithms. These approaches are known by many names, such as word spaces, semantic spaces, or distributed semantics and rest upon the Distributional Hypothesis: words that appear in similar contexts have similar meanings.

The newest version!
package jnt.FFT;
/** Computes FFT's of complex, single precision data where n is an integer power of 2.
  * This appears to be slower than the Radix2 method,
  * but the code is smaller and simpler, and it requires no extra storage.
  * 

* See {@link ComplexFloatFFT ComplexFloatFFT} for details of data layout. * * @author Bruce R. Miller [email protected] * @author Contribution of the National Institute of Standards and Technology, * @author not subject to copyright. * @author Derived from GSL (Gnu Scientific Library) * @author GSL's FFT Code by Brian Gough [email protected] * @author Since GSL is released under * @author GPL, * @author this package must also be. */ public class ComplexFloatFFT_Radix2 extends ComplexFloatFFT { static final int FORWARD = -1; static final int BACKWARD = +1; static final int DECINTIME = 0; static final int DECINFREQ = 1; private int logn; private int decimate=DECINTIME; public ComplexFloatFFT_Radix2(int n){ super(n); /* make sure that n is a power of 2 */ logn = Factorize.log2(n); if (logn < 0) throw new Error(n+" is not a power of 2"); } /* Lousy interface, but it'll do for now... */ public void setDecimateInTime(){ decimate = DECINTIME; } public void setDecimateInFrequency(){ decimate = DECINFREQ; } public void transform (float data[], int i0, int stride) { checkData(data,i0,stride); transform_internal(data, i0, stride, FORWARD); } public void backtransform (float data[], int i0, int stride) { checkData(data,i0,stride); transform_internal(data, i0, stride, BACKWARD); } /* ______________________________________________________________________ */ void transform_internal (float data[], int i0, int stride, int direction) { if (decimate==DECINFREQ) { transform_DIF(data,i0,stride,direction); } else { transform_DIT(data,i0,stride,direction); }} void transform_DIT (float data[], int i0, int stride, int direction) { if (n == 1) return; // Identity operation! /* bit reverse the input data for decimation in time algorithm */ bitreverse(data, i0, stride) ; /* apply fft recursion */ for (int bit = 0, dual = 1; bit < logn; bit++, dual *= 2) { float w_real = 1.0f; float w_imag = 0.0f; double theta = 2.0 * direction * Math.PI / (2.0 * dual); float s = (float)Math.sin(theta); float t = (float)Math.sin(theta / 2.0); float s2 = 2.0f * t * t; /* a = 0 */ for (int b = 0; b < n; b += 2 * dual) { int i = i0+b*stride ; int j = i0+(b + dual)*stride; float wd_real = data[j] ; float wd_imag = data[j+1] ; data[j] = data[i] - wd_real; data[j+1] = data[i+1] - wd_imag; data[i] += wd_real; data[i+1]+= wd_imag; } /* a = 1 .. (dual-1) */ for (int a = 1; a < dual; a++) { /* trignometric recurrence for w-> exp(i theta) w */ { float tmp_real = w_real - s * w_imag - s2 * w_real; float tmp_imag = w_imag + s * w_real - s2 * w_imag; w_real = tmp_real; w_imag = tmp_imag; } for (int b = 0; b < n; b += 2 * dual) { int i = i0+(b + a)*stride; int j = i0+(b + a + dual)*stride; float z1_real = data[j]; float z1_imag = data[j+1]; float wd_real = w_real * z1_real - w_imag * z1_imag; float wd_imag = w_real * z1_imag + w_imag * z1_real; data[j] = data[i] - wd_real; data[j+1] = data[i+1] - wd_imag; data[i] += wd_real; data[i+1]+= wd_imag; } } } } void transform_DIF(float data[], int i0, int stride, int direction) { if (n == 1) return; // Identity operation! /* apply fft recursion */ for (int bit = 0, dual = n / 2; bit < logn; bit++, dual /= 2) { float w_real = 1.0f; float w_imag = 0.0f; double theta = 2.0 * direction * Math.PI / (2 * dual); float s = (float)Math.sin(theta); float t = (float)Math.sin(theta / 2.0); float s2 = 2.0f * t * t; for (int b = 0; b < dual; b++) { for (int a = 0; a < n; a+= 2 * dual) { int i = i0+(b + a)*stride; int j = i0+(b + a + dual)*stride; float t1_real = data[i] + data[j]; float t1_imag = data[i+1] + data[j+1]; float t2_real = data[i] - data[j]; float t2_imag = data[i+1] - data[j+1]; data[i] = t1_real; data[i+1] = t1_imag; data[j] = w_real*t2_real - w_imag * t2_imag; data[j+1] = w_real*t2_imag + w_imag * t2_real; } /* trignometric recurrence for w-> exp(i theta) w */ { float tmp_real = w_real - s * w_imag - s2 * w_real; float tmp_imag = w_imag + s * w_real - s2 * w_imag; w_real = tmp_real; w_imag = tmp_imag; } } } /* bit reverse the output data for decimation in frequency algorithm */ bitreverse(data, i0, stride); } protected void bitreverse(float data[], int i0, int stride) { /* This is the Goldrader bit-reversal algorithm */ for (int i = 0, j=0; i < n - 1; i++) { int ii = i0+i*stride; int jj = i0+j*stride; int k = n / 2 ; if (i < j) { float tmp_real = data[ii]; float tmp_imag = data[ii+1]; data[ii] = data[jj]; data[ii+1] = data[jj+1]; data[jj] = tmp_real; data[jj+1] = tmp_imag; } while (k <= j) { j = j - k ; k = k / 2 ; } j += k ; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy