All Downloads are FREE. Search and download functionalities are using the official Maven repository.

jnt.FFT.RealDoubleFFT_Even Maven / Gradle / Ivy

Go to download

The S-Space Package is a collection of algorithms for building Semantic Spaces as well as a highly-scalable library for designing new distributional semantics algorithms. Distributional algorithms process text corpora and represent the semantic for words as high dimensional feature vectors. This package also includes matrices, vectors, and numerous clustering algorithms. These approaches are known by many names, such as word spaces, semantic spaces, or distributed semantics and rest upon the Distributional Hypothesis: words that appear in similar contexts have similar meanings.

The newest version!
package jnt.FFT;
/** Computes FFT's of real, double precision data when n is even, by
  * computing complex FFT.
  *
  * @author Bruce R. Miller [email protected]
  * @author Derived from Numerical Methods.
  * @author Contribution of the National Institute of Standards and Technology,
  * @author not subject to copyright.
  */

public class RealDoubleFFT_Even extends RealDoubleFFT {
  ComplexDoubleFFT fft;

  /** Create an FFT for transforming n points of real, double precision data. */
  public RealDoubleFFT_Even(int n){
    super(n);
    if (n%2 != 0)
      throw new IllegalArgumentException(n+" is not even");
    fft = new ComplexDoubleFFT_Mixed(n/2);
  }

  /** Compute the Fast Fourier Transform of data leaving the result in data. */
  public void transform (double data[]) {
    fft.transform(data);
    shuffle(data,+1);
  }

  /** Return data in wraparound order.
    * i0 and stride are used to traverse data; the new array is in 
    * packed (i0=0, stride=1) format.
    * @see wraparound format */
  public double[] toWraparoundOrder(double data[]){
    double newdata[] = new double[2*n];
    int nh = n/2;
    newdata[0]   = data[0];
    newdata[1]   = 0.0;
    newdata[n]   = data[1];
    newdata[n+1] = 0.0;
    for(int i=1; iwraparound format */
  public double[] toWraparoundOrder(double data[], int i0, int stride) {
    throw new Error("Not Implemented!"); }  


  /** Compute the (unnomalized) inverse FFT of data, leaving it in place.*/
  public void backtransform (double data[]){
    shuffle(data,-1);
    fft.backtransform(data);
  }

  private void shuffle(double data[], int sign){
    int nh = n/2;
    int nq = n/4;
    double c1=0.5, c2 = -0.5*sign;
    double theta = sign*Math.PI/nh;
    double wtemp = Math.sin(0.5*theta);
    double wpr = -2.0*wtemp*wtemp;
    double wpi = -Math.sin(theta);
    double wr = 1.0+wpr;
    double wi = wpi;
    for(int i=1; i < nq; i++){
      int i1 = 2*i;
      int i3 = n - i1;
      double h1r =  c1*(data[i1  ]+data[i3]);
      double h1i =  c1*(data[i1+1]-data[i3+1]);
      double h2r = -c2*(data[i1+1]+data[i3+1]);
      double h2i =  c2*(data[i1  ]-data[i3]);
      data[i1  ] = h1r+wr*h2r-wi*h2i;
      data[i1+1] = h1i+wr*h2i+wi*h2r;
      data[i3  ] = h1r-wr*h2r+wi*h2i;
      data[i3+1] =-h1i+wr*h2i+wi*h2r;
      wtemp = wr;
      wr += wtemp*wpr-wi*wpi;
      wi += wtemp*wpi+wi*wpr; }
    double d0 = data[0];
    if (sign == 1){
      data[0] = d0+data[1];
      data[1] = d0-data[1]; }
    else {
      data[0] = c1*(d0+data[1]);
      data[1] = c1*(d0-data[1]); }
    if (n%4==0)
      data[nh+1] *= -1;
  }

  /** Compute the Fast Fourier Transform of data leaving the result in data. */
  public void transform (double data[], int i0, int stride) {
    throw new Error("Not Implemented!"); }


  /** Compute the (unnomalized) inverse FFT of data, leaving it in place.*/
  public void backtransform (double data[], int i0, int stride){
    throw new Error("Not Implemented!"); }  

  /** Compute the (nomalized) inverse FFT of data, leaving it in place.*/
  public void inverse (double data[], int i0, int stride){
    throw new Error("Not Implemented!"); }  

  /** Return the normalization factor.  
   * Multiply the elements of the backtransform'ed data to get the normalized inverse.*/
  public double normalization(){
    return 2.0/((double) n); }

  /** Compute the (nomalized) inverse FFT of data, leaving it in place.*/
  public void inverse (double data[]) {
    backtransform(data);
  /* normalize inverse fft with 2/n */
    double norm = normalization();
    for (int i = 0; i < n; i++)
      data[i]   *= norm;
  }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy