All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.ucla.sspace.matrix.factorization.SingularValueDecompositionOctave Maven / Gradle / Ivy

Go to download

The S-Space Package is a Natural Language Processing library for distributional semantics representations. Distributional semantics representations model the meaning of words, phrases, and sentences as high dimensional vectors or probability distributions. The library includes common algorithms such as Latent Semantic Analysis, Random Indexing, and Latent Dirichlet Allocation. The S-Space package also includes software libraries for matrices, vectors, graphs, and numerous clustering algorithms.

The newest version!
/*
 * Copyright (c) 2011, Lawrence Livermore National Security, LLC. Produced at
 * the Lawrence Livermore National Laboratory. Written by Keith Stevens,
 * [email protected] OCEC-10-073 All rights reserved. 
 *
 * This file is part of the S-Space package and is covered under the terms and
 * conditions therein.
 *
 * The S-Space package is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation and distributed hereunder to you.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND NO REPRESENTATIONS OR WARRANTIES,
 * EXPRESS OR IMPLIED ARE MADE.  BY WAY OF EXAMPLE, BUT NOT LIMITATION, WE MAKE
 * NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR FITNESS FOR ANY
 * PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION
 * WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
 * RIGHTS.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see .
 */

package edu.ucla.sspace.matrix.factorization;

import edu.ucla.sspace.matrix.Matrix;
import edu.ucla.sspace.matrix.Matrix.Type;
import edu.ucla.sspace.matrix.MatrixBuilder;
import edu.ucla.sspace.matrix.MatrixFile;
import edu.ucla.sspace.matrix.MatrixIO;
import edu.ucla.sspace.matrix.MatrixIO.Format;
import edu.ucla.sspace.matrix.SparseMatrix;
import edu.ucla.sspace.matrix.MatlabSparseMatrixBuilder;

import java.io.BufferedReader;
import java.io.File;
import java.io.InputStreamReader;
import java.io.IOError;
import java.io.IOException;
import java.io.PrintWriter;

import java.util.logging.Logger;
import java.util.logging.Level;


/**
 * A wrapper around the Octave implementation of the SVD.
 *
 * @author Keith Stevens
 */
public class SingularValueDecompositionOctave extends AbstractSvd 
        implements SingularValueDecomposition, java.io.Serializable {

    private static final long serialVersionUID = 1L;


    private static final Logger LOG = 
        Logger.getLogger(SingularValueDecompositionOctave.class.getName());

    public void factorize(SparseMatrix matrix, int dimensions) {
        try {
            File mFile = File.createTempFile("octave-input", ".dat");
            MatrixIO.writeMatrix(matrix, mFile, Format.MATLAB_SPARSE);
            factorize(new MatrixFile(mFile, Format.MATLAB_SPARSE), dimensions);
        } catch (IOException ioe) {
            LOG.log(Level.SEVERE, "Converting to matlab file", ioe);
        }
    }

    public void factorize(MatrixFile mfile, int dimensions) {
        File matrix;

        try {
            if (mfile.getFormat() == Format.MATLAB_SPARSE)
                matrix = mfile.getFile();
            else
                matrix = MatrixIO.convertFormat(mfile.getFile(), 
                                                mfile.getFormat(),
                                                Format.MATLAB_SPARSE);

            // create the octave file for executing
            File octaveFile = File.createTempFile("octave-svds",".m");
            File uOutput = File.createTempFile("octave-svds-U",".dat");
            File sOutput = File.createTempFile("octave-svds-S",".dat");
            File vOutput = File.createTempFile("octave-svds-V",".dat");
            octaveFile.deleteOnExit();
            uOutput.deleteOnExit();
            sOutput.deleteOnExit();
            vOutput.deleteOnExit();

            // Print the customized Octave program to a file.
            PrintWriter pw = new PrintWriter(octaveFile);
            pw.printf(
                "Z = load('%s','-ascii');\n" +
                "A = spconvert(Z);\n" + 
                "clear Z;\n" + 
                "[U, S, V] = svds(A, %d);\n" +
                "save(\"-ascii\", \"%s\", \"U\");\n" +
                "save(\"-ascii\", \"%s\", \"S\");\n" +
                "save(\"-ascii\", \"%s\", \"V\");\n" +
                "fprintf('Octave Finished\\n');\n",
                matrix.getAbsolutePath(), dimensions, uOutput.getAbsolutePath(),
                sOutput.getAbsolutePath(), vOutput.getAbsolutePath());
            pw.close();
            
            // build a command line where octave executes the previously
            // constructed file
            String commandLine = "octave " + octaveFile.getAbsolutePath();
            LOG.fine(commandLine);
            Process octave = Runtime.getRuntime().exec(commandLine);

            BufferedReader br = new BufferedReader(
                new InputStreamReader(octave.getInputStream()));
            BufferedReader stderr = new BufferedReader(
                new InputStreamReader(octave.getErrorStream()));

            // capture the output
            StringBuilder output = new StringBuilder("Octave svds output:\n");
            for (String line = null; (line = br.readLine()) != null; ) {
                output.append(line).append("\n");
            }
            LOG.fine(output.toString());
            
            int exitStatus = octave.waitFor();
            LOG.fine("Octave svds exit status: " + exitStatus);

            // If Octave was successful in generating the files, return them.
            if (exitStatus == 0) {

                // load U in memory, since that is what most algorithms will be
                // using (i.e. it is the word space)
                U = MatrixIO.readMatrix(uOutput, Format.DENSE_TEXT, 
                                        Type.DENSE_IN_MEMORY);
                scaledClassFeatures = false;

                // Sigma only has n values for an n^2 matrix, so make it sparse
                Matrix S = MatrixIO.readMatrix(sOutput, Format.DENSE_TEXT, 
                                               Type.SPARSE_ON_DISK);
                singularValues = new double[dimensions];
                for (int s = 0; s < dimensions; ++s)
                    singularValues[s] = S.get(s, s);

                // Octave does not transpose V, so transpose it
                V = MatrixIO.readMatrix(vOutput, Format.DENSE_TEXT, 
                                        Type.DENSE_ON_DISK, true);
                scaledDataClasses = false;
            }
            else {
                StringBuilder sb = new StringBuilder();
                for (String line = null; (line = stderr.readLine()) != null; ) {
                    sb.append(line).append("\n");
                }
                // warning or error?
                LOG.warning("Octave exited with error status.  " + 
                                   "stderr:\n" + sb.toString());
            }
        } catch (IOException ioe) {
            LOG.log(Level.SEVERE, "Octave svds", ioe);
        } catch (InterruptedException ie) {
            LOG.log(Level.SEVERE, "Octave svds", ie);
        }
    }

    /**
     * {@inheritDoc}
     */
    public MatrixBuilder getBuilder() {
        return new MatlabSparseMatrixBuilder();
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy