All Downloads are FREE. Search and download functionalities are using the official Maven repository.

jnt.FFT.ComplexDoubleFFT Maven / Gradle / Ivy

Go to download

The S-Space Package is a Natural Language Processing library for distributional semantics representations. Distributional semantics representations model the meaning of words, phrases, and sentences as high dimensional vectors or probability distributions. The library includes common algorithms such as Latent Semantic Analysis, Random Indexing, and Latent Dirichlet Allocation. The S-Space package also includes software libraries for matrices, vectors, graphs, and numerous clustering algorithms.

The newest version!
package jnt.FFT;
/** Abstract Class representing FFT's of complex, double precision data.
  * Concrete classes are typically named ComplexDoubleFFT_method, implement the
  * FFT using some particular method.
  * 

* Complex data is represented by 2 double values in sequence: the real and imaginary * parts. Thus, in the default case (i0=0, stride=2), N data points is represented * by a double array dimensioned to 2*N. To support 2D (and higher) transforms, * an offset, i0 (where the first element starts) and stride (the distance from the * real part of one value, to the next: at least 2 for complex values) can be supplied. * The physical layout in the array data, of the mathematical data d[i] is as follows: *

  *    Re(d[i]) = data[i0 + stride*i]
  *    Im(d[i]) = data[i0 + stride*i+1]
  *
* The transformed data is returned in the original data array in * wrap-around order. * * @author Bruce R. Miller [email protected] * @author Contribution of the National Institute of Standards and Technology, * @author not subject to copyright. */ public abstract class ComplexDoubleFFT { int n; /** Create an FFT for transforming n points of complex, double precision data. */ public ComplexDoubleFFT(int n){ if (n <= 0) throw new IllegalArgumentException("The transform length must be >=0 : "+n); this.n = n; } /** Creates an instance of a subclass of ComplexDoubleFFT appropriate for data * of n elements.*/ public ComplexDoubleFFT getInstance(int n){ return new ComplexDoubleFFT_Mixed(n); } protected void checkData(double data[], int i0, int stride){ if (i0 < 0) throw new IllegalArgumentException("The offset must be >=0 : "+i0); if (stride < 2) throw new IllegalArgumentException("The stride must be >=2 : "+stride); if (i0+stride*(n-1)+2 > data.length) throw new IllegalArgumentException("The data array is too small for "+n+":"+ "i0="+i0+" stride="+stride+ " data.length="+data.length); } /** Compute the Fast Fourier Transform of data leaving the result in data. * The array data must be dimensioned (at least) 2*n, consisting of alternating * real and imaginary parts. */ public void transform (double data[]) { transform (data, 0,2); } /** Compute the Fast Fourier Transform of data leaving the result in data. * The array data must contain the data points in the following locations: *
    *    Re(d[i]) = data[i0 + stride*i]
    *    Im(d[i]) = data[i0 + stride*i+1]
    *
*/ public abstract void transform (double data[], int i0, int stride); /** Return data in wraparound order. * @see wraparound format */ public double[] toWraparoundOrder(double data[]){ return data; } /** Return data in wraparound order. * i0 and stride are used to traverse data; the new array is in * packed (i0=0, stride=2) format. * @see wraparound format */ public double[] toWraparoundOrder(double data[], int i0, int stride) { if ((i0==0)&&(stride==2)) return data; double newdata[] = new double[2*n]; for(int i=0; i * Re(D[i]) = data[i0 + stride*i] * Im(D[i]) = data[i0 + stride*i+1] *
*/ public abstract void backtransform (double data[], int i0, int stride); /** Return the normalization factor. * Multiply the elements of the backtransform'ed data to get the normalized inverse.*/ public double normalization(){ return 1.0/n; } /** Compute the (nomalized) inverse FFT of data, leaving it in place.*/ public void inverse(double data[]) { inverse(data,0,2); } /** Compute the (nomalized) inverse FFT of data, leaving it in place. * The frequency domain data must be in wrap-around order, and be stored * in the following locations: *
    *    Re(D[i]) = data[i0 + stride*i]
    *    Im(D[i]) = data[i0 + stride*i+1]
    *
*/ public void inverse (double data[], int i0, int stride) { backtransform(data, i0, stride); /* normalize inverse fft with 1/n */ double norm = normalization(); for (int i = 0; i < n; i++) { data[i0+stride*i] *= norm; data[i0+stride*i+1] *= norm; }} }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy