All Downloads are FREE. Search and download functionalities are using the official Maven repository.

jnt.FFT.ComplexDoubleFFT_Radix2 Maven / Gradle / Ivy

Go to download

The S-Space Package is a Natural Language Processing library for distributional semantics representations. Distributional semantics representations model the meaning of words, phrases, and sentences as high dimensional vectors or probability distributions. The library includes common algorithms such as Latent Semantic Analysis, Random Indexing, and Latent Dirichlet Allocation. The S-Space package also includes software libraries for matrices, vectors, graphs, and numerous clustering algorithms.

The newest version!
package jnt.FFT;
/** Computes FFT's of complex, double precision data where n is an integer power of 2.
  * This appears to be slower than the Radix2 method,
  * but the code is smaller and simpler, and it requires little extra storage.
  * 

* See {@link ComplexDoubleFFT ComplexDoubleFFT} for details of data layout. * * @author Bruce R. Miller [email protected] * @author Contribution of the National Institute of Standards and Technology, * @author not subject to copyright. * @author Derived from GSL (Gnu Scientific Library) * @author GSL's FFT Code by Brian Gough [email protected] * @author Since GSL is released under * @author GPL, * @author this package must also be. */ public class ComplexDoubleFFT_Radix2 extends ComplexDoubleFFT { static final double PI = Math.PI; static final int FORWARD = -1; static final int BACKWARD = +1; static final int DECINTIME = 0; static final int DECINFREQ = 1; private int logn; private int decimate=DECINTIME; private double trigs[]; public ComplexDoubleFFT_Radix2(int n){ super(n); /* make sure that n is a power of 2 */ int log = Factorize.log2(n); if (log < 0) throw new Error(n+" is not a power of 2"); this.logn = log; trigs = new double[logn+1]; double theta = Math.PI; for(int i=0; i<=logn; i++) { trigs[i]=Math.sin(theta); theta/=2.0; } } /* Lousy interface, but it'll do for now... */ public void setDecimateInTime(){ decimate = DECINTIME; } public void setDecimateInFrequency(){ decimate = DECINFREQ; } public void transform (double data[], int i0, int stride) { checkData(data,i0,stride); transform_internal(data, i0, stride, FORWARD); } public void backtransform (double data[], int i0, int stride) { checkData(data,i0,stride); transform_internal(data, i0, stride, BACKWARD); } /* ______________________________________________________________________ */ void transform_internal (double data[], int i0, int stride, int direction) { if (decimate==DECINFREQ) { transform_DIF(data,i0,stride,direction); } else { transform_DIT(data,i0,stride,direction); }} void transform_DIT (double data[], int i0, int stride, int direction) { if (n == 1) return; // Identity operation! /* bit reverse the input data for decimation in time algorithm */ bitreverse(data, i0, stride) ; /* apply fft recursion */ for (int bit = 0, dual = 1; bit < logn; bit++, dual *= 2) { double w_real = 1.0; double w_imag = 0.0; //double theta = 2.0 * direction * Math.PI / (2.0 * dual); //double s = Math.sin(theta); //double t = Math.sin(theta / 2.0); double s = direction*trigs[bit]; double t = direction*trigs[bit+1]; double s2 = 2.0 * t * t; /* a = 0 */ for (int b = 0; b < n; b += 2 * dual) { int i = i0+b*stride ; int j = i0+(b + dual)*stride; double wd_real = data[j] ; double wd_imag = data[j+1] ; data[j] = data[i] - wd_real; data[j+1] = data[i+1] - wd_imag; data[i] += wd_real; data[i+1]+= wd_imag; } /* a = 1 .. (dual-1) */ for (int a = 1; a < dual; a++) { /* trignometric recurrence for w-> exp(i theta) w */ { double tmp_real = w_real - s * w_imag - s2 * w_real; double tmp_imag = w_imag + s * w_real - s2 * w_imag; w_real = tmp_real; w_imag = tmp_imag; } for (int b = 0; b < n; b += 2 * dual) { int i = i0+(b + a)*stride; int j = i0+(b + a + dual)*stride; double z1_real = data[j]; double z1_imag = data[j+1]; double wd_real = w_real * z1_real - w_imag * z1_imag; double wd_imag = w_real * z1_imag + w_imag * z1_real; data[j] = data[i] - wd_real; data[j+1] = data[i+1] - wd_imag; data[i] += wd_real; data[i+1]+= wd_imag; } } } } void transform_DIF(double data[], int i0, int stride, int direction) { if (n == 1) return; // Identity operation! /* apply fft recursion */ for (int bit = 0, dual = n / 2; bit < logn; bit++, dual /= 2) { double w_real = 1.0; double w_imag = 0.0; //double theta = 2.0 * ((int) direction) * Math.PI / ((double) (2 * dual)); //double s = Math.sin(theta); //double t = Math.sin(theta / 2.0); double s = direction*trigs[logn-1-bit]; double t = direction*trigs[logn-bit]; double s2 = 2.0 * t * t; for (int b = 0; b < dual; b++) { for (int a = 0; a < n; a+= 2 * dual) { int i = i0+(b + a)*stride; int j = i0+(b + a + dual)*stride; double t1_real = data[i] + data[j]; double t1_imag = data[i+1] + data[j+1]; double t2_real = data[i] - data[j]; double t2_imag = data[i+1] - data[j+1]; data[i] = t1_real; data[i+1] = t1_imag; data[j] = w_real*t2_real - w_imag * t2_imag; data[j+1] = w_real*t2_imag + w_imag * t2_real; } /* trignometric recurrence for w-> exp(i theta) w */ { double tmp_real = w_real - s * w_imag - s2 * w_real; double tmp_imag = w_imag + s * w_real - s2 * w_imag; w_real = tmp_real; w_imag = tmp_imag; } } } /* bit reverse the output data for decimation in frequency algorithm */ bitreverse(data, i0, stride); } protected void bitreverse(double data[], int i0, int stride) { /* This is the Goldrader bit-reversal algorithm */ for (int i = 0, j=0; i < n - 1; i++) { int ii = i0+i*stride; int jj = i0+j*stride; int k = n / 2 ; if (i < j) { double tmp_real = data[ii]; double tmp_imag = data[ii+1]; data[ii] = data[jj]; data[ii+1] = data[jj+1]; data[jj] = tmp_real; data[jj+1] = tmp_imag; } while (k <= j) { j = j - k ; k = k / 2 ; } j += k ; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy